Gravitational wave radiometry: Mapping a stochastic gravitational wave background

被引:75
|
作者
Mitra, Sanjit [1 ]
Dhurandhar, Sanjeev [1 ,2 ]
Souradeep, Tarun [1 ]
Lazzarini, Albert [3 ]
Mandic, Vuk [3 ]
Bose, Sukanta [4 ]
Ballmer, Stefan [3 ]
机构
[1] Inter Univ Ctr Astron & Astrophys, Pune 411007, Maharashtra, India
[2] Observ Cote Azur, F-06304 Nice 4, France
[3] CALTECH, LIGO Lab, Pasadena, CA 91125 USA
[4] Washington State Univ, Dept Phys, Pullman, WA 99164 USA
来源
PHYSICAL REVIEW D | 2008年 / 77卷 / 04期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevD.77.042002
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The problem of the detection and mapping of a stochastic gravitational wave background (SGWB), either cosmological or astrophysical, bears a strong semblance to the analysis of the cosmic microwave background (CMB) anisotropy and polarization, which too is a stochastic field, statistically described in terms of its correlation properties. An astrophysical gravitational wave background (AGWB) will likely arise from an incoherent superposition of unmodelled and/or unresolved sources and cosmological gravitational wave backgrounds (CGWB) are also predicted in certain scenarios. The basic statistic we use is the cross correlation between the data from a pair of detectors. In order to "point" the pair of detectors at different locations one must suitably delay the signal by the amount it takes for the gravitational waves (GW) to travel to both detectors corresponding to a source direction. Then the raw (observed) sky map of the SGWB is the signal convolved with a beam response function that varies with location in the sky. We first present a thorough analytic understanding of the structure of the beam response function using an analytic approach employing the stationary phase approximation. The true sky map is obtained by numerically deconvolving the beam function in the integral (convolution) equation. We adopt the maximum likelihood framework to estimate the true sky map using the conjugate gradient method that has been successfully used in the broadly similar, well-studied CMB map-making problem. We numerically implement and demonstrate the method on signal generated by simulated (unpolarized) SGWB for the GW radiometer consisting of the LIGO pair of detectors at Hanford and Livingston. We include "realistic" additive Gaussian noise in each data stream based on the LIGO-I noise power spectral density. The extension of the method to multiple baselines and polarized GWB is outlined. In the near future the network of GW detectors, including the Advanced LIGO and Virgo detectors that will be sensitive to sources within a thousand times larger spatial volume, could provide promising data sets for GW radiometry.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Resonant features in the stochastic gravitational wave background
    Fumagalli, Jacopo
    Renaux-Petel, Sebastien
    Witkowski, Lukas T.
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (08):
  • [22] Astrometric effects of a stochastic gravitational wave background
    Book, Laura G.
    Flanagan, Eanna E.
    PHYSICAL REVIEW D, 2011, 83 (02):
  • [23] Wave-optics limit of the stochastic gravitational wave background
    Garoffolo, Alice
    PHYSICS OF THE DARK UNIVERSE, 2024, 44
  • [24] Gravitational-wave Geodesy: A New Tool for Validating Detection of the Stochastic Gravitational-wave Background
    Callister, T. A.
    Coughlin, M. W.
    Kanner, J. B.
    ASTROPHYSICAL JOURNAL LETTERS, 2018, 869 (02)
  • [25] Modulating the experimental signature of a stochastic gravitational wave background
    Finn, LS
    Lazzarini, A
    PHYSICAL REVIEW D, 2001, 64 (08):
  • [26] Detection of anisotropies in the gravitational-wave stochastic background
    Allen, B
    Ottewill, AC
    PHYSICAL REVIEW D, 1997, 56 (02): : 545 - 563
  • [27] Direct searches for a cosmological stochastic gravitational wave background
    Lazzarini, A
    Particles, Strings, and Cosmology, 2005, 805 : 87 - 93
  • [28] Probing primordial features with the stochastic gravitational wave background
    Braglia, Matteo
    Chen, Xingang
    Hazra, Dhiraj Kumar
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2021, (03):
  • [29] The stochastic gravitational-wave background in the absence of horizons
    Barausse, Enrico
    Brito, Richard
    Cardoso, Vitor
    Dvorkin, Irina
    Pani, Paolo
    CLASSICAL AND QUANTUM GRAVITY, 2018, 35 (20)
  • [30] Probing the Universe through the stochastic gravitational wave background
    Kuroyanagi, Sachiko
    Chiba, Takeshi
    Takahashi, Tomo
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2018, (11):