NOTE ON p-ADIC q-EULER MEASURE

被引:0
作者
Kim, Young-Hee [1 ]
Jang, Lee-Chae [2 ]
Kim, Taekyun [1 ]
Lee, Byungje [3 ]
Rim, Seog-Hoon [4 ]
机构
[1] Kwangwoon Univ, Div Gen Educ Math, Seoul 139701, South Korea
[2] KonKuk Univ, Dept Math & Comp Sci, Chungju 380701, South Korea
[3] Kwangwoon Univ, Dept Wireless Commun Engn, Seoul 139701, South Korea
[4] Kyungpook Natl Univ, Dept Math Educ, Taegu 702701, South Korea
关键词
q-Euler numbers and polynomials; p-adic q-Euler measure; NUMBERS; POLYNOMIALS; GENOCCHI;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In [1], Carlitz defined q-Bernoulli numbers as follows : beta(0,q) = 1, q(q beta + 1)(k) - beta(k,q) = {(0) (1) (if k = 1,)(if k > 1,) with the usual convention of replacing beta(k) by beta(k,q). In [13], Kolbitz constructed a p-adic Carlitz's q-Bernoulli measure for studying the q-extension of p-adic L-function. In [4, 8], T. Kim considered the Carlitz's type q-Euler numbers and polynomials. In this paper, we consider Nasybullin's type p-adic q-measure and we derive a Carlitz's type q-Euler measure on Z(p) from the Nasybullin's type p-adic q-measure.
引用
收藏
页码:1329 / 1334
页数:6
相关论文
共 14 条