Estimation for High-Dimensional Linear Mixed-Effects Models Using l1-Penalization

被引:115
作者
Schelldorfer, Juerg [1 ]
Buehlmann, Peter [1 ]
Van De Geer, Sara [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
adaptive Lasso; coordinate gradient descent; coordinatewise optimization; Lasso; random-effects model; variable selection; variance components; VARIABLE SELECTION; COORDINATE DESCENT; REGRESSION-MODELS; DANTZIG SELECTOR; ADAPTIVE LASSO; SPARSITY;
D O I
10.1111/j.1467-9469.2011.00740.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an l(1)-penalized estimation procedure for high-dimensional linear mixed-effects models. The models are useful whenever there is a grouping structure among high-dimensional observations, that is, for clustered data. We prove a consistency and an oracle optimality result and we develop an algorithm with provable numerical convergence. Furthermore, we demonstrate the performance of the method on simulated and a real high-dimensional data set.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 33 条
[31]  
Zhao P, 2006, J MACH LEARN RES, V7, P2541
[32]   On the "degrees of freedom" of the lasso [J].
Zou, Hui ;
Hastie, Trevor ;
Tibshirani, Robert .
ANNALS OF STATISTICS, 2007, 35 (05) :2173-2192
[33]   The adaptive lasso and its oracle properties [J].
Zou, Hui .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2006, 101 (476) :1418-1429