Estimation for High-Dimensional Linear Mixed-Effects Models Using l1-Penalization

被引:115
作者
Schelldorfer, Juerg [1 ]
Buehlmann, Peter [1 ]
Van De Geer, Sara [1 ]
机构
[1] ETH, Dept Math, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
adaptive Lasso; coordinate gradient descent; coordinatewise optimization; Lasso; random-effects model; variable selection; variance components; VARIABLE SELECTION; COORDINATE DESCENT; REGRESSION-MODELS; DANTZIG SELECTOR; ADAPTIVE LASSO; SPARSITY;
D O I
10.1111/j.1467-9469.2011.00740.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose an l(1)-penalized estimation procedure for high-dimensional linear mixed-effects models. The models are useful whenever there is a grouping structure among high-dimensional observations, that is, for clustered data. We prove a consistency and an oracle optimality result and we develop an algorithm with provable numerical convergence. Furthermore, we demonstrate the performance of the method on simulated and a real high-dimensional data set.
引用
收藏
页码:197 / 214
页数:18
相关论文
共 33 条
[11]  
Huang J, 2008, STAT SINICA, V18, P1603
[12]   Fixed and Random Effects Selection in Mixed Effects Models [J].
Ibrahim, Joseph G. ;
Zhu, Hongtu ;
Garcia, Ramon I. ;
Guo, Ruixin .
BIOMETRICS, 2011, 67 (02) :495-503
[13]  
LAIRD NM, 1982, BIOMETRICS, V83, P1014
[14]   The group lasso for logistic regression [J].
Meier, Lukas ;
van de Geer, Sara A. ;
Buhlmann, Peter .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2008, 70 :53-71
[15]   High-dimensional graphs and variable selection with the Lasso [J].
Meinshausen, Nicolai ;
Buehlmann, Peter .
ANNALS OF STATISTICS, 2006, 34 (03) :1436-1462
[16]   Stability selection [J].
Meinshausen, Nicolai ;
Buehlmann, Peter .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 :417-473
[17]   p-Values for High-Dimensional Regression [J].
Meinshausen, Nicolai ;
Meier, Lukas ;
Buehlmann, Peter .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2009, 104 (488) :1671-1681
[18]   LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA [J].
Meinshausen, Nicolai ;
Yu, Bin .
ANNALS OF STATISTICS, 2009, 37 (01) :246-270
[19]  
Molenberghs Geert., 2000, Linear Mixed Models for Longitudinal Data
[20]   Variable Selection for Semiparametric Mixed Models in Longitudinal Studies [J].
Ni, Xiao ;
Zhang, Daowen ;
Zhang, Hao Helen .
BIOMETRICS, 2010, 66 (01) :79-88