Quantitative microbiome profiling links gut community variation to microbial load

被引:725
作者
Vandeputte, Doris [1 ,2 ,3 ]
Kathagen, Gunter [1 ,2 ]
D'hoe, Kevin [1 ,2 ,3 ]
Vieira-Silva, Sara [1 ,2 ]
Valles-Colomer, Mireia [1 ,2 ]
Sabino, Joao [4 ]
Wang, Jun [1 ,2 ]
Tito, Raul Y. [1 ,2 ,3 ]
De Commer, Lindsey [1 ]
Darzi, Youssef [1 ,2 ]
Ermeire, Severine V. [4 ]
Falony, Gwen [1 ,2 ]
Raes, Jeroen [1 ,2 ]
机构
[1] Univ Leuven, KU Leuven, Dept Microbiol & Immunol, Rega Inst, Herestr 49, B-3000 Leuven, Belgium
[2] VIB, Ctr Microbiol, Kasteelpk Arenberg 31, B-3000 Leuven, Belgium
[3] Vrije Univ Brussel, Dept Bioengn Sci, Res Grp Microbiol, Pl Laan 2, B-1050 Brussels, Belgium
[4] Katholieke Univ Leuven, Translat Res Ctr Gastrointestinal Disorders TARGI, B-3000 Leuven, Belgium
基金
欧盟地平线“2020”;
关键词
FECAL BACTERIA; ENTEROTYPES; DIVERSITY; MARKERS;
D O I
10.1038/nature24460
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Current sequencing-based analyses of faecal microbiota quantify microbial taxa and metabolic pathways as fractions of the sample sequence library generated by each analysis(1,2). Although these relative approaches permit detection of disease-associated microbiome variation, they are limited in their ability to reveal the interplay between microbiota and host health(3,4). Comparative analyses of relative microbiome data cannot provide information about the extent or directionality of changes in taxa abundance or metabolic potential(5). If microbial load varies substantially between samples, relative profiling will hamper attempts to link microbiome features to quantitative data such as physiological parameters or metabolite concentrations(5,6). Saliently, relative approaches ignore the possibility that altered overall microbiota abundance itself could be a key identifier of a disease-associated ecosystem configuration(7). To enable genuine characterization of host-microbiota interactions, microbiome research must exchange ratios for counts(4,8,9). Here we build a workflow for the quantitative microbiome profiling of faecal material, through parallelization of amplicon sequencing and flow cytometric enumeration of microbial cells. We observe up to tenfold differences in the microbial loads of healthy individuals and relate this variation to enterotype differentiation. We show how microbial abundances underpin both microbiota variation between individuals and covariation with host phenotype. Quantitative profiling bypasses compositionality effects in the reconstruction of gut microbiota interaction networks and reveals that the taxonomic trade-off between Bacteroides and Prevotella is an artefact of relative microbiome analyses. Finally, we identify microbial load as a key driver of observed microbiota alterations in a cohort of patients with Crohn's disease(10), here associated with a low-cell-count Bacteroides enterotype (as defined through relative profiling)(11,12).
引用
收藏
页码:507 / +
页数:17
相关论文
共 47 条
[1]   Enterotypes of the human gut microbiome [J].
Arumugam, Manimozhiyan ;
Raes, Jeroen ;
Pelletier, Eric ;
Le Paslier, Denis ;
Yamada, Takuji ;
Mende, Daniel R. ;
Fernandes, Gabriel R. ;
Tap, Julien ;
Bruls, Thomas ;
Batto, Jean-Michel ;
Bertalan, Marcelo ;
Borruel, Natalia ;
Casellas, Francesc ;
Fernandez, Leyden ;
Gautier, Laurent ;
Hansen, Torben ;
Hattori, Masahira ;
Hayashi, Tetsuya ;
Kleerebezem, Michiel ;
Kurokawa, Ken ;
Leclerc, Marion ;
Levenez, Florence ;
Manichanh, Chaysavanh ;
Nielsen, H. Bjorn ;
Nielsen, Trine ;
Pons, Nicolas ;
Poulain, Julie ;
Qin, Junjie ;
Sicheritz-Ponten, Thomas ;
Tims, Sebastian ;
Torrents, David ;
Ugarte, Edgardo ;
Zoetendal, Erwin G. ;
Wang, Jun ;
Guarner, Francisco ;
Pedersen, Oluf ;
de Vos, Willem M. ;
Brunak, Soren ;
Dore, Joel ;
Weissenbach, Jean ;
Ehrlich, S. Dusko ;
Bork, Peer .
NATURE, 2011, 473 (7346) :174-180
[2]   Genetic diversity of viable, injured, and dead fecal bacteria assessed by fluorescence-activated cell sorting and 16S rRNA gene analysis [J].
Ben-Amor, K ;
Heilig, H ;
Smidt, H ;
Vaughan, EE ;
Abee, T ;
de Vos, WM .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2005, 71 (08) :4679-4689
[3]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[4]   fitdistrplus: An R Package for Fitting Distributions [J].
Delignette-Muller, Marie Laure ;
Dutang, Christophe .
JOURNAL OF STATISTICAL SOFTWARE, 2015, 64 (04) :1-34
[5]   UCHIME improves sensitivity and speed of chimera detection [J].
Edgar, Robert C. ;
Haas, Brian J. ;
Clemente, Jose C. ;
Quince, Christopher ;
Knight, Rob .
BIOINFORMATICS, 2011, 27 (16) :2194-2200
[6]   Population-level analysis of gut microbiome variation [J].
Falony, Gwen ;
Joossens, Marie ;
Vieira-Silva, Sara ;
Wang, Jun ;
Darzi, Youssef ;
Faust, Karoline ;
Kurilshikov, Alexander ;
Bonder, Marc Jan ;
Valles-Colomer, Mireia ;
Vandeputte, Doris ;
Tito, Raul Y. ;
Chaffron, Samuel ;
Rymenans, Leen ;
Verspecht, Chlo ;
De Sutter, Lise ;
Lima-Mendez, Gipsi ;
D'hoe, Kevin ;
Jonckheere, Karl ;
Homola, Daniel ;
Garcia, Roberto ;
Tigchelaar, Ettje F. ;
Eeckhaudt, Linda ;
Fu, Jingyuan ;
Henckaerts, Liesbet ;
Zhernakova, Alexandra ;
Wijmenga, Cisca ;
Raes, Jeroen .
SCIENCE, 2016, 352 (6285) :560-564
[7]   Microbial interactions: from networks to models [J].
Faust, Karoline ;
Raes, Jeroen .
NATURE REVIEWS MICROBIOLOGY, 2012, 10 (08) :538-550
[8]  
Fuller BJ, 2004, CRYOLETTERS, V25, P375
[9]   Je, a versatile suite to handle multiplexed NGS libraries with unique molecular identifiers [J].
Girardot, Charles ;
Scholtalbers, Jelle ;
Sauer, Sajoscha ;
Su, Shu-Yi ;
Furlong, Eileen E. M. .
BMC BIOINFORMATICS, 2016, 17
[10]   It's all relative: analyzing microbiome data as compositions [J].
Gloor, Gregory B. ;
Wu, Jia Rong ;
Pawlowsky-Glahn, Vera ;
Jose Egozcue, Juan .
ANNALS OF EPIDEMIOLOGY, 2016, 26 (05) :322-329