Explicit solutions of the 2+1-dimensional modified Toda lattice through straightening out of the relativistic Toda flows

被引:18
作者
Dai, HH
Geng, XG
机构
[1] City Univ Hong Kong, Dept Math, Hong Kong, Peoples R China
[2] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
关键词
2+1 modified Toda lattice; the relativistic Toda lattice; explicit solutions;
D O I
10.1143/JPSJ.72.3063
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The 2 + 1-dimensional modified Toda lattice is decomposed into solvable ordinary differential equations with the help of the 1 + 1-dimensional relativistic Toda lattices. Based on the decomposition and the theory of algebraic curve, the straightening out of various flows, including the continuous flow and discrete flow, is exactly given through the introduced Abel-Jacobi coordinates. The explicit theta function solutions for the 2 + 1-dimensional modified Toda lattice are obtained explicitly.
引用
收藏
页码:3063 / 3069
页数:7
相关论文
共 50 条
[1]   THE QUASI-PERIODIC SOLUTIONS TO THE DISCRETE NONLINEAR SCHRODINGER-EQUATION [J].
AHMAD, S ;
CHOWDHURY, AR .
JOURNAL OF MATHEMATICAL PHYSICS, 1987, 28 (01) :134-137
[2]  
ALBER SJ, 1991, NONLINEAR PROC GEOPH, P6
[3]  
Belokolos ED., 1994, Springer series in nonlinear dynamics
[4]  
Bogolyubov N. N. Jr., 1982, Soviet Physics - Doklady, V27, P113
[5]   LAX REPRESENTATION AND COMPLETE-INTEGRABILITY FOR THE PERIODIC RELATIVISTIC TODA LATTICE [J].
BRUSCHI, M ;
RAGNISCO, O .
PHYSICS LETTERS A, 1989, 134 (06) :365-370
[6]   On quasi-periodic solutions of the 2+1 dimensional Caudrey-Dodd-Gibbon-Kotera-Sawada equation [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
PHYSICS LETTERS A, 1999, 256 (01) :59-65
[7]   From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation [J].
Cao, CW ;
Geng, XG ;
Wu, YT .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (46) :8059-8078
[8]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970
[9]   Algebro-geometric solution of the 2+1 dimensional Burgers equation with a discrete variable [J].
Cao, CW ;
Geng, XG ;
Wang, HY .
JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (01) :621-643
[10]   INFINITE RELATIVISTIC TODA LATTICE - SCATTERING PROBLEM AND CANONICAL STRUCTURE [J].
COSENTINO, S .
INVERSE PROBLEMS, 1991, 7 (04) :535-555