A convolutional neural network based super resolution technique of CT image utilizing both sinogram domain and image domain data

被引:1
作者
Yu, Minwoo [1 ]
Han, Minah [1 ]
Baek, Jongduk [1 ]
机构
[1] Yonsei Univ, Sch Integrated Technol, Seoul, South Korea
来源
MEDICAL IMAGING 2022: IMAGE PROCESSING | 2022年 / 12032卷
基金
新加坡国家研究基金会;
关键词
super-resolution; sinogram upsampling network; modulated periodic activations; hybrid domain;
D O I
10.1117/12.2611972
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In previous deep learning based super-resolution techniques for CT images, only image domain data is used for training. However, image blurring can occur in image domain method which disrupts accurate diagnosis. In this work, we propose using both sinogram and image domain data to resolve the blurring issue. To predict upsampled sinogram more accurately, we use a convolutional neural network (CNN) as an encoder, which maps an input image to feature map for decoder. For decoder, we use dual multi-layer perceptron (MLP) structure. Our proposed dual-MLP structure consists of modulator and synthesizer MLP. Synthesizer MLP predicts the output pixel value by using coordinate-based information as an input, and modulator MLP helps synthesizer to estimate the output value accurately by using feature map information as an input. This network structure preserves high frequency components better than simple CNN structure. Through our proposed sinogram upsampling network (SUN) at sinogram domain, upsampled sinogram was generated, and image was reconstructed by filtered backprojection. The reconstructed image from upsampled sinogram preserves detailed textures compared to LR image. However, residual artifacts and blur still remain. Therefore, we train CNN using image domain data to reduce residual artifacts and blur. For the dataset, we acquire projection data from Mayo Clinic image using Siddon's algorithm in fan-beam CT geometry applying 4x1 detector binning. The binned sinogram is then used as an input for the SUN. The results show that our proposed hybrid domain method outperforms image domain and sinogram domain method with higher quantitative evaluation results.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] A residual convolutional neural network for polarimetric SAR image super-resolution
    Shen, Huanfeng
    Lin, Liupeng
    Li, Jie
    Yuan, Qiangqiang
    Zhao, Lingli
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2020, 161 (161) : 90 - 108
  • [32] Dual path convolutional neural network for single image super-resolution
    Ma Z.-J.
    Lu H.
    Dong Y.-R.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (06): : 2089 - 2097
  • [33] A two-channel convolutional neural network for image super-resolution
    Li, Sumei
    Fan, Ru
    Lei, Guoqing
    Yue, Guanghui
    Hou, Chunping
    NEUROCOMPUTING, 2018, 275 : 267 - 277
  • [34] LARGE RECEPTIVE FIELD CONVOLUTIONAL NEURAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Qiang
    Fan, Huijie
    Cong, Yang
    Tang, Yandong
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 958 - 962
  • [35] Deep convolutional neural network for single remote sensing image super resolution
    Jin, Yangyang
    Han, Xianwei
    Zhang, Shichao
    Zhou, Shuning
    Yang, Guanghui
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [36] Lightweight Convolutional Neural Network with SE Module for Image Super-Resolution
    Wu, Yuwen
    Zhou, Xiaofei
    Liu, Ping
    Tan, Jianlong
    Guo, Li
    6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND QUANTITATIVE MANAGEMENT, 2018, 139 : 144 - 150
  • [37] Hyperspectral image super-resolution using deep convolutional neural network
    Li, Yunsong
    Hu, Jing
    Zhao, Xi
    Xie, Weiying
    Li, JiaoJiao
    NEUROCOMPUTING, 2017, 266 : 29 - 41
  • [38] A MLP-PNN Neural Network for CCD Image Super-Resolution in Wavelet Packet Domain
    Zhao Xiuying
    Fu Deyou
    Zhai Linpei
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 12318 - +
  • [39] Sparse-Based Domain Adaptation Network for OCTA Image Super-Resolution Reconstruction
    Hao, Huaying
    Xu, Cong
    Zhang, Dan
    Yan, Qifeng
    Zhang, Jiong
    Liu, Yue
    Zhao, Yitian
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2022, 26 (09) : 4402 - 4413
  • [40] CT-image of rock samples super resolution using 3D convolutional neural network
    Wang, Yukai
    Teng, Qizhi
    He, Xiaohai
    Feng, Junxi
    Zhang, Tingrong
    COMPUTERS & GEOSCIENCES, 2019, 133