Total colorings of equibipartite graphs

被引:1
作者
Chen, BL
Dong, L
Liu, QZ
Huang, KC
机构
[1] Tunghai Univ, Dept Math, Taichung 40704, Taiwan
[2] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[3] Providence Univ, Dept Appl Math, Taichung 43309, Taiwan
关键词
total coloring; Latin square;
D O I
10.1016/S0012-365X(98)00118-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The total chromatic number chi(T)(G) of a graph G is the least number of colors needed to color the vertices and the edges of G such that no adjacent or incident pair of elements receive the same color. A simple graph G is called type 1 if chi(T)(G) = Delta(G) + 1, where Delta(G) is the maximum degree of G. In this paper we prove the following conjecture of Chen et al.: An (n - 2)-regular equibipartite graph K-n,K-n - E(J) is type 1 if and only if J contains a 4-cycle. (C) 1999 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:59 / 65
页数:7
相关论文
共 9 条
  • [1] [Anonymous], 1968, USPEKHIMAT NAUK
  • [2] Behzad M., 1965, THESIS MICHIGAN STAT
  • [3] A study of the total chromatic number of equibipartite graphs
    Chen, BL
    Cheng, CK
    Fu, HL
    Huang, KC
    [J]. DISCRETE MATHEMATICS, 1998, 184 (1-3) : 49 - 60
  • [4] CHEN BL, TOTAL CHROMATIC NUMB
  • [5] Chetwynd A.G., 1988, Congr. Numer, P195
  • [6] KOROVINA NP, 1980, MAT ZAMETKI, V28, P271
  • [7] LIU QZ, UNPUB EMBEDDING UNIP
  • [8] ONE-FACTORIZATIONS OF THE COMPLETE GRAPH - A SURVEY
    MENDELSOHN, E
    ROSA, A
    [J]. JOURNAL OF GRAPH THEORY, 1985, 9 (01) : 43 - 65
  • [9] Yap H.P., 1996, LECT NOTES MATH, V1623