Phosphorus-doped silicon nanoparticles as high performance LIB negative electrode

被引:18
|
作者
Tang, Fangqi [1 ]
Tan, Yu [1 ]
Jiang, Tingting [1 ]
Zhou, Yingke [1 ]
机构
[1] Wuhan Univ Sci & Technol, Coll Mat & Met, State Key Lab Refractories & Met, Wuhan 430081, Peoples R China
基金
中国国家自然科学基金;
关键词
LITHIUM-ION BATTERIES; ANODE MATERIAL; HIGH-ENERGY; GRAPHENE; COMPOSITE; FRAMEWORK; STORAGE; STEP;
D O I
10.1007/s10853-021-06679-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Silicon is getting much attention as the promising next-generation negative electrode materials for lithium-ion batteries with the advantages of abundance, high theoretical specific capacity and environmentally friendliness. In this work, a series of phosphorus (P)-doped silicon negative electrode materials (P-Si-34, P-Si-60 and P-Si-120) were obtained by a simple heat treatment method, which can maintain the original nanoparticle morphology. The P-Si-60 material shows excellent discharge specific capacity, rate performance and cycling performance. The discharge specific capacity after 50 cycles remains > 2000 mAh g(-1) with a capacity retention rate of 74.3%. The excellent electrochemical properties of P-Si-60 material can be attributed to the phosphorus doping without destroying the original particle morphology and nanostructure and the higher intrinsic electric conductivity. It will bring new thoughts for the further application of silicon negative electrode materials.
引用
收藏
页码:2803 / 2812
页数:10
相关论文
共 50 条
  • [21] ANNEALING EFFECT IN PHOSPHORUS-DOPED POLYCRYSTALLINE SILICON
    GNADINGER, AP
    KOSICKI, BB
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1974, 121 (03) : C87 - C87
  • [22] DIFFUSION OF CARBON AND SULFUR IN PHOSPHORUS-DOPED SILICON
    GRUZIN, PL
    ZEMSKII, SV
    BULKIN, AD
    MAKAROV, NM
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1974, 7 (09): : 1241 - 1241
  • [23] Synthesis and characterization of phosphorus-doped Si nanoparticles
    Wang, Julia
    Hananouchi, Steven
    Browning, Nigel D.
    Kauzlarich, Susan M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [24] HYDROGEN IN PHOSPHORUS-DOPED AND CARBON-DOPED CRYSTALLINE SILICON
    ENDROS, AL
    KRUHLER, W
    GRABMAIER, J
    PHYSICA B, 1991, 170 (1-4): : 365 - 370
  • [25] Phytic Acid Assisted Formation of Phosphorus-Doped Graphene Aerogel as Electrode Material for High-Performance Supercapacitor
    Nie, Gaosheng
    Deng, Hangchun
    Huang, Jie
    Wang, Chunyan
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (12): : 12578 - 12586
  • [26] Enhanced Si-Ge interdiffusion in high phosphorus-doped germanium on silicon
    Cai, Feiyang
    Dong, Yuanwei
    Tan, Yew Heng
    Tan, Chuan Seng
    Xia, Guangrui
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (10)
  • [27] Oxygen precipitation in heavily phosphorus-doped silicon wafer annealed at high temperatures
    Zeng, Yuheng
    Yang, Deren
    Ma, Xiangyang
    Chen, Jiahe
    Que, Duanlin
    MATERIALS SCIENCE AND ENGINEERING B-ADVANCED FUNCTIONAL SOLID-STATE MATERIALS, 2009, 159-60 : 145 - 148
  • [28] Electronic transport in phosphorus-doped silicon nanocrystal networks
    Stegner, A. R.
    Pereira, R. N.
    Klein, K.
    Lechner, R.
    Dietmueller, R.
    Brandt, M. S.
    Stutzmann, M.
    Wiggers, H.
    PHYSICAL REVIEW LETTERS, 2008, 100 (02)
  • [29] HALL EFFECT AND IMPURITY LEVELS IN PHOSPHORUS-DOPED SILICON
    LONG, D
    MYERS, J
    PHYSICAL REVIEW, 1959, 115 (05): : 1119 - 1121
  • [30] INFRARED-ABSORPTION SPECTRUM OF PHOSPHORUS-DOPED SILICON
    LEIGH, RS
    SANGSTER, MJL
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1984, 17 (11): : L305 - L310