The enhanced measurement-device-independent quantum key distribution with two-intensity decoy states

被引:3
作者
Zhu, Jian-Rong [1 ,2 ]
Zhu, Feng [1 ,2 ]
Zhou, Xing-Yu [1 ,2 ]
Wang, Qin [1 ,2 ,3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Inst Signal Proc Transmiss, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Minist Educ, Key Lab Broadband Wireless Commun & Sensor Networ, Nanjing 210003, Jiangsu, Peoples R China
[3] Univ Sci & Technol China, Key Lab Quantum Informat, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
Quantum key distribution; Decoy state; Weak coherent light; UNCONDITIONAL SECURITY; CRYPTOGRAPHY; ATTACK;
D O I
10.1007/s11128-016-1371-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We put forward a new scheme for implementing the measurement-device-independent quantum key distribution (QKD) with weak coherent source, while using only two different intensities. In the new scheme, we insert a beam splitter and a local detector at both Alice's and Bob's side, and then all the triggering and non-triggering signals could be employed to process parameter estimations, resulting in very precise estimations for the two-single-photon contributions. Besides, we compare its behavior with two other often used methods, i.e., the conventional standard three-intensity decoy-state measurement-device-independent QKD and the passive measurement-device-independent QKD. Through numerical simulations, we demonstrate that our new approach can exhibit outstanding characteristics not only in the secure transmission distance, but also in the final key generation rate.
引用
收藏
页码:3799 / 3813
页数:15
相关论文
共 30 条
[1]   Limitations on practical quantum cryptography [J].
Brassard, G ;
Lütkenhaus, N ;
Mor, T ;
Sanders, BC .
PHYSICAL REVIEW LETTERS, 2000, 85 (06) :1330-1333
[2]   Side-Channel-Free Quantum Key Distribution [J].
Braunstein, Samuel L. ;
Pirandola, Stefano .
PHYSICAL REVIEW LETTERS, 2012, 108 (13)
[3]  
Comandar LC, 2016, NAT PHOTONICS, V10, P312, DOI [10.1038/NPHOTON.2016.50, 10.1038/nphoton.2016.50]
[4]   Finite-key analysis for measurement-device-independent quantum key distribution [J].
Curty, Marcos ;
Xu, Feihu ;
Cui, Wei ;
Lim, Charles Ci Wen ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2014, 5
[5]   Passive decoy-state quantum key distribution with practical light sources [J].
Curty, Marcos ;
Ma, Xiongfeng ;
Qi, Bing ;
Moroder, Tobias .
PHYSICAL REVIEW A, 2010, 81 (02)
[6]   Phase-remapping attack in practical quantum-key-distribution systems [J].
Fung, Chi-Hang Fred ;
Qi, Bing ;
Tamaki, Kiyoshi ;
Lo, Hoi-Kwong .
PHYSICAL REVIEW A, 2007, 75 (03)
[7]   Quantum key distribution with high loss: Toward global secure communication [J].
Hwang, WY .
PHYSICAL REVIEW LETTERS, 2003, 91 (05) :579011-579014
[8]   Attacking a practical quantum-key-distribution system with wavelength-dependent beam-splitter and multiwavelength sources [J].
Li, Hong-Wei ;
Wang, Shuang ;
Huang, Jing-Zheng ;
Chen, Wei ;
Yin, Zhen-Qiang ;
Li, Fang-Yi ;
Zhou, Zheng ;
Liu, Dong ;
Zhang, Yang ;
Guo, Guang-Can ;
Bao, Wan-Su ;
Han, Zheng-Fu .
PHYSICAL REVIEW A, 2011, 84 (06)
[9]   Decoy state quantum key distribution [J].
Lo, HK ;
Ma, XF ;
Chen, K .
PHYSICAL REVIEW LETTERS, 2005, 94 (23)
[10]   Unconditional security of quantum key distribution over arbitrarily long distances [J].
Lo, HK ;
Chau, HF .
SCIENCE, 1999, 283 (5410) :2050-2056