Background Noise Adaptive Energy-Efficient Keywords Recognition Processor With Reusable DNN and Reconfigurable Architecture

被引:2
作者
He, Guoqiang [1 ]
Ding, Xiaoling [2 ]
Zhou, Minghao [1 ]
Liu, Bo [2 ]
Li, Li [1 ]
机构
[1] Nanjing Univ, Sch Elect Sci & Engn, Nanjing 210008, Peoples R China
[2] Southeast Univ, Natl ASIC Syst Engn Ctr, Nanjing 210096, Peoples R China
关键词
Power demand; Background noise; Training; Speech recognition; Neural networks; Signal to noise ratio; Quantization (signal); Keywords recognition; SNR prediction module; background noise adaptive; approximate computing; NEURAL-NETWORK;
D O I
10.1109/ACCESS.2022.3150354
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a background noise adaptive energy-efficient keywords recognition processor with Reusable DNN (RDNN) and reconfigurable architecture. To reduce power consumption while maintaining the recognition accuracy of different background noises, the SNR prediction module determines whether the computing mode is low power consumption mode (LPM) or high performance mode (HPM). In LPM, DNN-shift (shift-based deep neural network) is used to achieve high recognition accuracy in a low background noise environment; in HPM, DNN-8bit (8bit weighted deep neural network) is used to achieve low power consumption in a high background noise environment. And the two modes share most of the hardware, and approximate computing is introduced to further reduce power consumption. Evaluated under 22nm process technology, this work can support up to 10 keywords recognition with the power consumption of 11.2 mu W for high background noise and 7.3 mu W for low background noise.
引用
收藏
页码:17819 / 17827
页数:9
相关论文
共 27 条
[1]  
Bhattarai K, 2017, INT CONF INFO SCI, P32, DOI 10.1109/ICIST.2017.7926796
[2]  
Bo Liu, 2020, GLSVLSI '20. Proceedings of the 2020 Great Lakes Symposium on VLSI, P271, DOI 10.1145/3386263.3407589
[3]   Adaptive Second-Order Sliding Mode Control: A Lyapunov Approach [J].
Ding, Shihong ;
Mei, Keqi ;
Yu, Xinghuo .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2022, 67 (10) :5392-5399
[4]   DeepShift: Towards Multiplication-Less Neural Networks [J].
Elhoushi, Mostafa ;
Chen, Zihao ;
Shafiq, Farhan ;
Tian, Ye Henry ;
Li, Joey Yiwei .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, CVPRW 2021, 2021, :2359-2368
[5]   Adaptive Fuzzy Control for Stochastic High-Order Nonlinear Systems With Output Constraints [J].
Fang, Liandi ;
Ding, Shihong ;
Park, Ju H. ;
Ma, Li .
IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2021, 29 (09) :2635-2646
[6]   Adaptive Fuzzy Control for Nontriangular Stochastic High-Order Nonlinear Systems Subject to Asymmetric Output Constraints [J].
Fang, Liandi ;
Ding, Shihong ;
Park, Ju H. ;
Ma, Li .
IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (02) :1280-1291
[7]  
Giraldo JSP, 2019, SYMP VLSI CIRCUITS, pC52, DOI [10.23919/VLSIC.2019.8777994, 10.23919/vlsic.2019.8777994]
[8]  
Giraldo JSP, 2018, PROC EUR SOLID-STATE, P166, DOI 10.1109/ESSCIRC.2018.8494342
[9]  
Jaeger D., 2015, ENCY COMPUTATIONAL N, P385, DOI [10.1007/978-1-4614-6675-8_100065, DOI 10.1007/978-1-4614-6675-8_100065]
[10]  
Kepuska V.Z., 2015, Journal of Computer and Communications, V3, P1