Real-space entanglement spectrum of quantum Hall systems

被引:81
作者
Dubail, J. [1 ]
Read, N. [1 ]
Rezayi, E. H. [2 ]
机构
[1] Yale Univ, Dept Phys, New Haven, CT 06520 USA
[2] Calif State Univ Los Angeles, Dept Phys, Los Angeles, CA 90032 USA
基金
美国国家科学基金会;
关键词
FLUID;
D O I
10.1103/PhysRevB.85.115321
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the real-space entanglement spectrum for fractional quantum Hall systems, which maintains locality along the spatial cut, and provide evidence that it possesses a scaling property. We also consider the closely related particle entanglement spectrum and carry out the Schmidt decomposition of the Laughlin state analytically at large size.
引用
收藏
页数:5
相关论文
共 17 条
[1]  
Chuang I. N., 2000, Quantum Computation and Quantum Information
[2]  
DUBAIL J, UNPUB
[4]   Entanglement entropy in fermionic Laughlin states [J].
Haque, Masudul ;
Zozulya, Oleksandr ;
Schoutens, Kareljan .
PHYSICAL REVIEW LETTERS, 2007, 98 (06)
[5]   Topological entanglement entropy [J].
Kitaev, A ;
Preskill, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[7]   Detecting topological order in a ground state wave function [J].
Levin, M ;
Wen, XG .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[8]   Entanglement spectrum as a generalization of entanglement entropy: Identification of topological order in non-Abelian fractional quantum Hall effect states [J].
Li, Hui ;
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2008, 101 (01)
[9]   Non-Abelian anyons and topological quantum computation [J].
Nayak, Chetan ;
Simon, Steven H. ;
Stern, Ady ;
Freedman, Michael ;
Das Sarma, Sankar .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :1083-1159
[10]   Entanglement entropy of integer quantum Hall states [J].
Rodriguez, Ivan D. ;
Sierra, German .
PHYSICAL REVIEW B, 2009, 80 (15)