Rigorous bounds on the performance of a hybrid dynamical-decoupling quantum-computing scheme

被引:39
作者
Khodjasteh, Kaveh [1 ,2 ]
Lidar, Daniel A. [1 ,3 ,4 ]
机构
[1] Univ So Calif, Dept Phys, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[2] Dartmouth Coll, Dept Phys & Astron, Hanover, NH 03755 USA
[3] Univ So Calif, Dept Chem, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[4] Univ So Calif, Dept Elect Engn, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
来源
PHYSICAL REVIEW A | 2008年 / 78卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.78.012355
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study dynamical decoupling in a multiqubit setting, where it is combined with quantum logic gates. This is illustrated in terms of computation using Heisenberg interactions only, where global decoupling pulses commute with the computation. We derive a rigorous error bound on the trace distance or fidelity between the desired computational state and the actual time-evolved state, for a system subject to coupling to a bounded-strength bath. The bound is expressed in terms of the operator norm of the effective Hamiltonian generating the evolution in the presence of decoupling and logic operations. We apply the bound to the case of periodic pulse sequences and find that in order to maintain a constant trace distance or fidelity, the number of cycles-at fixed pulse interval and width-should scale in inverse proportion to the square of the number of qubits. This sets a scalability limit on the protection of quantum computation using periodic dynamical decoupling.
引用
收藏
页数:14
相关论文
共 45 条
[11]   Universal quantum computation with the exchange interaction [J].
DiVincenzo, DP ;
Bacon, D ;
Kempe, J ;
Burkard, G ;
Whaley, KB .
NATURE, 2000, 408 (6810) :339-342
[12]   Unification of dynamical decoupling and the quantum Zeno effect [J].
Facchi, P ;
Lidar, DA ;
Pascazio, S .
PHYSICAL REVIEW A, 2004, 69 (03) :032314-1
[13]   Theory of fault-tolerant quantum computation [J].
Gottesman, D .
PHYSICAL REVIEW A, 1998, 57 (01) :127-137
[14]   Theory of decoherence-free fault-tolerant universal quantum computation [J].
Kempe, J ;
Bacon, D ;
Lidar, DA ;
Whaley, KB .
PHYSICAL REVIEW A, 2001, 63 (04) :1-29
[15]   Controlling quantum systems by embedded dynamical decoupling schemes [J].
Kern, O ;
Alber, G .
PHYSICAL REVIEW LETTERS, 2005, 95 (25)
[16]   Fault-tolerant quantum dynamical decoupling [J].
Khodjasteh, K ;
Lidar, DA .
PHYSICAL REVIEW LETTERS, 2005, 95 (18)
[17]   Performance of deterministic dynamical decoupling schemes: Concatenated and periodic pulse sequences [J].
Khodjasteh, Kaveh ;
Lidar, Daniel A. .
PHYSICAL REVIEW A, 2007, 75 (06)
[18]   Theory of quantum error correction for general noise [J].
Knill, E ;
Laflamme, R ;
Viola, L .
PHYSICAL REVIEW LETTERS, 2000, 84 (11) :2525-2528
[19]   Universal dynamical control of quantum mechanical decay: Modulation of the coupling to the continuum [J].
Kofman, AG ;
Kurizki, G .
PHYSICAL REVIEW LETTERS, 2001, 87 (27) :270405-270405
[20]   Universal pulse sequence to minimize spin depahasing in the central spin decoherence problem [J].
Lee, B. ;
Witzel, W. M. ;
Das Sarma, S. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)