Suprathermal Ion Backgrounds of Solar Energetic Particle Events

被引:20
|
作者
Kahler, S. W. [1 ]
Ling, A. G. [2 ]
机构
[1] Air Force Res Lab, Space Vehicles Directorate, 3550 Aberdeen Ave, Kirtland AFB, NM 87117 USA
[2] Atmospher Environm Res, Albuquerque, NM 87110 USA
关键词
acceleration of particles; Sun: coronal mass ejections (CMEs); Sun: flares; Sun: particle emission; CORONAL MASS EJECTIONS; COMMON SPECTRUM; PROTON EVENTS; POPULATION; ACCELERATION; HELIOSPHERE; ABUNDANCE; SHOCKS; TAILS; EARTH;
D O I
10.3847/1538-4357/aafb03
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Gradual solar energetic particle (SEP) events result from the acceleration of low-energy suprathermal seed particles to high (E > 10 MeV nuc(-1)) energies by shocks driven by coronal mass ejections (CMEs). Several studies suggest connections between suprathermal particles measured in situ at 1 au and the seed particles accelerated near the Sun to E > 10 MeV. We correlate E > 10 MeV SEP event peak intensities (Ip) with suprathermal H and He intensities at each of two energies averaged over four periods around the SEP onsets in the Geostationary Operational Environmental Satellite spacecraft during the period of 1998-2016. The 201 SEP events are sorted into four groups by their associated solar source longitudes and are further separated between events in transient CMEs and in normal solar wind (SW). The mean Ip in CME SW that is larger than in normal SW that was found earlier is confirmed. The suprathermals significantly correlate (correlation coefficients CCs approximate to 0.4-0.6) with the SEP Ip from the 0 degrees to W40 degrees range, but only weakly (CCs approximate to 0.0-0.3) with SEP events from the well-connected W41 degrees to W83 degrees range. Eastern hemisphere SEP intensities are uncorrelated (CC similar or equal to 0.0) with suprathermals in normal SW but are well correlated (CC approximate to 0.4-0.7) for those in transient CME SW, which we interpret with a simple model involving perpendicular shock acceleration of the suprathermals. The in situ B field magnitude shows no correlation with SEP intensities for any longitude range or timescale. These results confirm that tracking suprathermal intensities at 1 au can be useful in forecasting the Ip of SEP events.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Radial dependence of solar energetic particle events
    Kallenrode, MB
    PROCEEDINGS OF THE CONFERENCE SOLAR WIND 11 - SOHO 16: CONNECTING SUN AND HELIOSPHERE, 2005, 592 : 87 - 94
  • [22] Large gradual solar energetic particle events
    Desai, Mihir
    Giacalone, Joe
    LIVING REVIEWS IN SOLAR PHYSICS, 2016, 13
  • [23] A survey of gradual solar energetic particle events
    Barnard, L.
    Lockwood, M.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2011, 116
  • [24] Study of large solar energetic particle events with halo coronal mass ejections and their associated solar flares
    Kharayat, Hema
    Prasad, Lalan
    Pokharia, Meena
    Bhoj, Chandrashekhar
    Mathpal, Chandni
    NEW ASTRONOMY, 2017, 53 : 44 - 52
  • [25] Release Episodes of Electrons and Protons in Solar Energetic Particle Events
    Kolympiris, Vasilis
    Papaioannou, Athanasios
    Kouloumvakos, Athanasios
    Daglis, Ioannis A.
    Anastasiadis, Anastasios
    UNIVERSE, 2023, 9 (10)
  • [26] Solar Energetic Particle Events with Short and Long Onset Times
    Kihara, Kosuke
    Asai, Ayumi
    Yashiro, Seiji
    Nitta, Nariaki V.
    ASTROPHYSICAL JOURNAL, 2023, 946 (01)
  • [27] 3He-Rich Solar Energetic Particle Events
    G. M. Mason
    Space Science Reviews, 2007, 130 : 231 - 242
  • [28] Large gradual solar energetic particle events
    Mihir Desai
    Joe Giacalone
    Living Reviews in Solar Physics, 2016, 13
  • [29] SEED POPULATION IN LARGE SOLAR ENERGETIC PARTICLE EVENTS AND THE TWIN-CME SCENARIO
    Ding, Liu-Guan
    Li, Gang
    Le, Gui-Ming
    Gu, Bin
    Cao, Xin-Xin
    ASTROPHYSICAL JOURNAL, 2015, 812 (02)
  • [30] The Energetic Particle Detector: Energetic particle instrument suite for the Solar Orbiter mission
    Rodriguez-Pacheco, J.
    Wimmer-Schweingruber, R. F.
    Mason, G. M.
    Ho, G. C.
    Sanchez-Prieto, S.
    Prieto, M.
    Martin, C.
    Seifert, H.
    Andrews, G. B.
    Kulkarni, S. R.
    Panitzsch, L.
    Boden, S.
    Boettcher, S. I.
    Cernuda, I.
    Elftmann, R.
    Espinosa Lara, F.
    Gomez-Herrero, R.
    Terasa, C.
    Almena, J.
    Begley, S.
    Boehm, E.
    Blanco, J. J.
    Boogaerts, W.
    Carrasco, A.
    Castillo, R.
    da Silva Farina, A.
    de Manuel Gonzalez, V.
    Drews, C.
    Dupont, A. R.
    Eldrum, S.
    Gordillo, C.
    Gutierrez, O.
    Haggerty, D. K.
    Hayes, J. R.
    Heber, B.
    Hill, M. E.
    Juengling, M.
    Kerem, S.
    Knierim, V.
    Koehler, J.
    Kolbe, S.
    Kulemzin, A.
    Lario, D.
    Lees, W. J.
    Liang, S.
    Martinez Hellin, A.
    Meziat, D.
    Montalvo, A.
    Nelson, K. S.
    Parra, P.
    ASTRONOMY & ASTROPHYSICS, 2020, 642 (642)