Robust Inference in the Capital Asset Pricing Model Using the Multivariate t-distribution

被引:8
作者
Galea, Manuel [1 ]
Cademartori, David [2 ]
Curci, Roberto [3 ]
Molina, Alonso [1 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estadist, Ave Vicuna Mackenna 4860, Santiago 7820436, Chile
[2] Pontificia Univ Catolica Valparaiso, Escuela Comercio, Ave Brasil 2830, Valparaiso 2340031, Chile
[3] Dominican Univ, Brennan Sch Business, River Forest, IL 60305 USA
关键词
capital asset pricing model; estimation of systematic risk; tests of mean-variance efficiency; t-distribution; generalized method of moments; multifactor asset pricing model; GENERALIZED-METHOD; COVARIANCE-MATRIX; RISK; EQUILIBRIUM; SELECTION; SKEWNESS; MOMENTS; TESTS; CAPM; EM;
D O I
10.3390/jrfm13060123
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we consider asset pricing models under the multivariatet-distribution with finite second moment. Such a distribution, which contains the normal distribution, offers a more flexible framework for modeling asset returns. The main objective of this work is to develop statistical inference tools, such as parameter estimation and linear hypothesis tests in asset pricing models, with an emphasis on the Capital Asset Pricing Model (CAPM). An extension of the CAPM, the Multifactor Asset Pricing Model (MAPM), is also discussed. A simple algorithm to estimate the model parameters, including the kurtosis parameter, is implemented. Analytical expressions for the Score function and Fisher information matrix are provided. For linear hypothesis tests, the four most widely used tests (likelihood-ratio, Wald, score, and gradient statistics) are considered. In order to test the mean-variance efficiency, explicit expressions for these four statistical tests are also presented. The results are illustrated using two real data sets: the Chilean Stock Market data set and another from the New York Stock Exchange. The asset pricing model under the multivariatet-distribution presents a good fit, clearly better than the asset pricing model under the assumption of normality, in both data sets.
引用
收藏
页数:22
相关论文
共 66 条
[1]   Skewed distributions in finance and actuarial science: a review [J].
Adcock, Christopher ;
Eling, Martin ;
Loperfido, Nicola .
EUROPEAN JOURNAL OF FINANCE, 2015, 21 (13-14) :1253-1281
[2]  
Amenc N., 2003, PORTFOLIO THEORY PER
[3]  
[Anonymous], GESTION PORTEFEUILLE
[4]  
[Anonymous], 1997, The econometrics of financial markets
[5]   A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction [J].
Bao, Te ;
Diks, Cees ;
Li, Hao .
ECONOMIC MODELLING, 2018, 68 :611-621
[6]   Comparing Asset Pricing Models [J].
Barillas, Francisco ;
Shanken, Jay .
JOURNAL OF FINANCE, 2018, 73 (02) :715-754
[7]   Asymmetric volatility and risk in equity markets [J].
Bekaert, G ;
Wu, GJ .
REVIEW OF FINANCIAL STUDIES, 2000, 13 (01) :1-42
[8]   Necessary conditions for the CAPM [J].
Berk, JB .
JOURNAL OF ECONOMIC THEORY, 1997, 73 (01) :245-257
[9]   COMPARISON OF STABLE AND STUDENT DISTRIBUTIONS AS STATISTICAL MODELS FOR STOCK PRICES [J].
BLATTBERG, RC ;
GONEDES, NJ .
JOURNAL OF BUSINESS, 1974, 47 (02) :244-280
[10]  
Bolfarine H, 1996, COMPUTATION STAT, V11, P63