A New Upper Bound for the Independence Number of Edge Chromatic Critical Graphs

被引:4
作者
Luo, Rong [1 ]
Zhao, Yue [2 ]
机构
[1] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
[2] Univ Cent Florida, Dept Math, Orlando, FL 32816 USA
关键词
edge coloring; independence number; critical graphs; CONJECTURE;
D O I
10.1002/jgt.20552
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1968, Vizing conjectured that if G is a Delta-critical graph with n vertices, then alpha(G)<= n/2, where alpha(G) is the independence number of G. In this paper, we apply Vizing and Vizing-like adjacency lemmas to this problem and prove that alpha(G)<(((5 Delta-6)n)/(8 Delta-6))<5n/8 if Delta >= 6. (C) 2010 Wiley Periodicals, Inc. J Graph Theory 68: 202-212, 2011
引用
收藏
页码:202 / 212
页数:11
相关论文
共 12 条
[1]   Bounds for the independence number of critical graphs [J].
Brinkmann, G ;
Choudum, SA ;
Grünewald, S ;
Steffen, E .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2000, 32 :137-140
[2]  
FAVRHOLDT LM, 2006, 20 IMADA U SO DENM
[3]   Independent sets and 2-factors in edge-chromatic-critical graphs [J].
Grünewald, S ;
Steffen, E .
JOURNAL OF GRAPH THEORY, 2004, 45 (02) :113-118
[4]  
Jensen T., 1995, Graph Coloring Problems, P115
[5]  
LUO R, FINDING DELTA SIGMA, DOI DOI 10.1002/JGT.20548
[6]   A note on Vizing's independence number conjecture of edge chromatic critical graphs [J].
Luo, Rong ;
Zhao, Yue .
DISCRETE MATHEMATICS, 2006, 306 (15) :1788-1790
[7]   An application of Vizing and Vizing-like adjacency lemmas to Vizing's Independence Number Conjecture of edge chromatic critical graphs [J].
Luo, Rong ;
Zhao, Yue .
DISCRETE MATHEMATICS, 2009, 309 (09) :2925-2929
[8]   The Size of Edge Chromatic Critical Graphs with Maximum Degree 6 [J].
Luo, Rong ;
Miao, Lianying ;
Zhao, Yue .
JOURNAL OF GRAPH THEORY, 2009, 60 (02) :149-171
[9]   Planar graphs of maximum degree seven are class I [J].
Sanders, DP ;
Zhao, Y .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 83 (02) :201-212
[10]  
Vizing V.G., 1965, Cybernetics, V1, P32