ON THE SINGULAR VALUES OF MATRICES WITH DISPLACEMENT STRUCTURE

被引:52
作者
Beckermann, Bernhard [1 ]
Townsend, Alex [2 ]
机构
[1] UMR 8524 CNRS, Lab Paul Painleve, Equipe ANO EDP, UFR Math,UST Lille, F-59655 Villeneuve Dascq, France
[2] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
singular values; displacement structure; Zolotarev; rational; VANDERMONDE MATRICES; SYLVESTER EQUATION; CONDITION NUMBER; HANKEL-MATRICES; LOWER BOUNDS; APPROXIMATION; DECAY; BAD;
D O I
10.1137/16M1096426
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Matrices with displacement structure such as Pick, Vandermonde, and Hankel matrices appear in a diverse range of applications. In this paper, we use an extremal problem involving rational functions to derive explicit bounds on the singular values of such matrices. For example, we show that the k th singular value of a real n x n positive de finite Hankel matrix, H-n, is bounded by C rho(-k/logn) || H-n || 2 with explicitly given constants C > 0 and rho > 1, where || H-n ||2 is the spectral norm. This means that a real n x n positive de fi nite Hankel matrix can be approximated, up to an accuracy of is an element of|| H-n || 2 with 0 < is an element of < 1, by a rank O (log n log(1/is an element of)) matrix. Analogous results are obtained for Pick, Cauchy, real Vandermonde, Lowner, and certain Krylov matrices.
引用
收藏
页码:1227 / 1248
页数:22
相关论文
共 49 条
[1]  
AKHIESER N. I., 1990, TRANSL MATH MONOGR, V79
[2]  
[Anonymous], 2013, MATRIX COMPUTATIONS
[3]  
[Anonymous], THESIS
[4]  
[Anonymous], 2010, Handbook of Mathematical Functions
[5]  
[Anonymous], 1969, Sbornik: Mathematics, DOI 10.1070/SM1969v007n04ABEH001107
[6]  
[Anonymous], 2014, THESIS U OXFORD
[7]   On the decay rate of Hankel singular values and related issues [J].
Antoulas, AC ;
Sorensen, DC ;
Zhou, Y .
SYSTEMS & CONTROL LETTERS, 2002, 46 (05) :323-342
[8]  
Badea C., 2013, HDB LINEAR ALGEBRA
[9]   FAST SINGULAR VALUE DECAY FOR LYAPUNOV SOLUTIONS WITH NONNORMAL COEFFICIENTS [J].
Baker, Jonathan ;
Embree, Mark ;
Sabino, John .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2015, 36 (02) :656-668
[10]  
Beckermann B, 2000, NUMER MATH, V85, P553, DOI 10.1007/s002110000145