Knockout and pullout recombineering for naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei

被引:33
作者
Kang, Yun [1 ]
Norris, Michael H. [1 ]
Wilcox, Bruce A. [2 ]
Tuanyok, Apichai [3 ]
Keim, Paul S. [3 ,4 ]
Hoang, Tung T. [1 ,5 ]
机构
[1] Univ Hawaii Manoa, Dept Mol Biosci & Bioengn, Honolulu, HI 96822 USA
[2] Univ Hawaii Manoa, Dept Ecol & Hlth, Honolulu, HI 96822 USA
[3] Translat Genom Res Inst, Flagstaff, AZ USA
[4] No Arizona Univ, Flagstaff, AZ 86011 USA
[5] Univ Hawaii Manoa, Dept Microbiol, Honolulu, HI 96822 USA
关键词
SELECT-AGENT-COMPLIANT; GENETIC TOOLS; ESCHERICHIA-COLI; MUTAGENESIS; CLONING; RECOMBINATION; EXPRESSION; RESISTANCE; MUTANTS; VECTOR;
D O I
10.1038/nprot.2011.346
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Phage lambda-Red proteins are powerful tools for pulling and knocking out chromosomal fragments but have been limited to the gamma-proteobacteria. Procedures are described here to easily knock out (KO) and pull out (POPO) chromosomal DNA fragments from naturally transformable Burkholderia thailandensis and Burkholderia pseudomallei. This system takes advantage of published compliant counterselectable and selectable markers (sacB, pheS, gat and the arabinose-utilization operon) and lambda-Red mutant proteins. pheS-gat (KO) or oriT-ColE1ori-gat-ori1600-rep (POPO) PCR fragments are generated with flanking 40- to 45-bp homologies to targeted regions incorporated on PCR primers. One-step recombination is achieved by incubation of the PCR product with cells expressing lambda-Red proteins and subsequent selection on glyphosate-containing medium. This procedure takes similar to 10 d and is advantageous over previously published protocols: (i) smaller PCR products reduce primer numbers and amplification steps, (ii) POPO fragments suitable for downstream manipulation in Escherichia coli are obtained and (iii) chromosomal KO increases flexibility for downstream processing.
引用
收藏
页码:1085 / 1104
页数:20
相关论文
共 31 条
[21]   In Vivo Himar1 Transposon Mutagenesis of Burkholderia pseudomallei [J].
Rholl, Drew A. ;
Trunck, Lily A. ;
Schweizer, Herbert P. .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (24) :7529-7535
[22]   Recombineering:: In vivo genetic engineering in E-coli, S-enterica, and beyond [J].
Sawitzke, James A. ;
Thomason, Lynn C. ;
Costantino, Nina ;
Bubunenko, Mikhail ;
Datta, Simanti ;
Court, Donald L. .
ADVANCED BACTERIAL GENETICS: USE OF TRANSPOSONS AND PHAGE FOR GENOMIC ENGIEERING, 2007, 421 :171-199
[23]  
Schweizer HP, 1996, MOLECULAR BIOLOGY OF PSEUDOMONADS, P229
[24]   UNIVERSAL CHEMICAL-ASSAY FOR THE DETECTION AND DETERMINATION OF SIDEROPHORES [J].
SCHWYN, B ;
NEILANDS, JB .
ANALYTICAL BIOCHEMISTRY, 1987, 160 (01) :47-56
[25]   Highly efficient method for introducing successive multiple scarless gene deletions and markerless gene insertions into the Yersinia pestis chromosome [J].
Sun, Wei ;
Wang, Shifeng ;
Curtiss, Roy, III .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (13) :4241-4245
[26]   Targeted mutagenesis of Burkholderia thailandensis and Burkholdetia pseudomallei through natural transformation of PCR fragments [J].
Thongdee, Metawee ;
Gallagher, Larry A. ;
Schell, Mark ;
Dharakul, Tararaj ;
Songsivilai, Sirirurg ;
Manoil, Colin .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2008, 74 (10) :2985-2989
[27]   Melioidosis:: insights into the pathogenicity of Burkholderia pseudomallei [J].
Wiersinga, WJ ;
van der Poll, T ;
White, NJ ;
Day, NP ;
Peacock, SJ .
NATURE REVIEWS MICROBIOLOGY, 2006, 4 (04) :272-282
[28]  
Wilson D.E., 2007, Biosafety in microbiological and biomedical laboratories, V5th
[29]   IMPROVED M13 PHAGE CLONING VECTORS AND HOST STRAINS - NUCLEOTIDE-SEQUENCES OF THE M13MP18 AND PUC19 VECTORS [J].
YANISCHPERRON, C ;
VIEIRA, J ;
MESSING, J .
GENE, 1985, 33 (01) :103-119
[30]   Use of ribosomal promoters from Burkholderia cenocepacia and Burkholderia cepacia for improved expression of transporter protein in Escheriehia coli [J].
Yu, Manda ;
Tsang, Jimmy S. H. .
PROTEIN EXPRESSION AND PURIFICATION, 2006, 49 (02) :219-227