New multiple-soliton (kink) solutions for the high-order Boussinesq-Burgers equation

被引:5
作者
Guo, Peng [1 ,2 ,3 ]
Wu, Xiang [2 ,3 ]
Wang, Liangbi [2 ,3 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Math & Phys, Lanzhou, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Mechatron Engn, Lanzhou, Peoples R China
[3] Lanzhou Jiaotong Univ, Minist Educ, Key Lab Railway Vehicle Thermal Engn, Lanzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
TRAVELING-WAVE SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; NONLINEAR EVOLUTION-EQUATIONS; TANH-FUNCTION METHOD; MULTISOLITON SOLUTIONS; MATHEMATICAL PHYSICS; TRANSFORMATION; COEFFICIENTS;
D O I
10.1080/17455030.2016.1158885
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The homogeneous balance method is extended to find more new solutions of nonlinear evolution equations. As illustrative examples, many new multiple-soliton (kink) solutions of the high-order Boussinesq-Burgers equation are constructed. It is shown that the homogeneous balance method may provide us with a straightforward and effective mathematic tool for generating new multiple-soliton (kink) solutions of nonlinear evolution equations.
引用
收藏
页码:383 / 396
页数:14
相关论文
共 29 条
  • [1] Ablowitz M., 1991, Soliton, Nonlinear Evolution Equations and Inverse Scattering
  • [2] SOLITON SOLUTION OF GENERALIZED CHIRAL NONLINEAR SCHRODINGER'S EQUATION WITH TIME-DEPENDENT COEFFICIENTS
    Biswas, Anjan
    Mirzazadeh, M.
    Eslami, M.
    [J]. ACTA PHYSICA POLONICA B, 2014, 45 (04): : 849 - 866
  • [3] Application of first integral method to fractional partial differential equations
    Eslami, M.
    Vajargah, B. Fathi
    Mirzazadeh, M.
    Biswas, A.
    [J]. INDIAN JOURNAL OF PHYSICS, 2014, 88 (02) : 177 - 184
  • [4] Extended tanh-function method and its applications to nonlinear equations
    Fan, EG
    [J]. PHYSICS LETTERS A, 2000, 277 (4-5) : 212 - 218
  • [5] Exp-function method for nonlinear wave equations
    He, Ji-Huan
    Wu, Xu-Hong
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 30 (03) : 700 - 708
  • [6] Hirota R., 2004, The direct method in soliton theory
  • [7] Exact traveling wave solutions of the Boussinesq-Burgers equation
    Khalfallah, Mohammed
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2009, 49 (3-4) : 666 - 671
  • [8] Exact Travelling Wave Solutions of two Important Nonlinear Partial Differential Equations
    Kim, Hyunsoo
    Bae, Jae-Hyeong
    Sakthivel, Rathinasamy
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2014, 69 (3-4): : 155 - 162
  • [9] Darboux transformation and multi-soliton solutions of Boussinesq-Burgers equation
    Li, XM
    Chen, AH
    [J]. PHYSICS LETTERS A, 2005, 342 (5-6) : 413 - 420
  • [10] THE RELATIONS AMONG A SPECIAL TYPE OF SOLUTIONS IN SOME (D+1)-DIMENSIONAL NONLINEAR EQUATIONS
    LOU, SY
    NI, GJ
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1989, 30 (07) : 1614 - 1620