Improved Deep Learning Model Based on Self-Paced Learning for Multiscale Short-Term Electricity Load Forecasting

被引:7
|
作者
Li, Meiping [1 ]
Xie, Xiaoming [1 ]
Zhang, Du [1 ]
机构
[1] Macau Univ Sci & Technol, Fac Informat Technol, Macau 999078, Peoples R China
关键词
short-term load forecasting (STLF); autoencoder; self-paced learning (SPL); NEURAL-NETWORKS; SYSTEM; TEMPERATURE; SVM;
D O I
10.3390/su14010188
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Electricity loads are basic and important information for power generation facilities and traders, especially in terms of production plans, daily operations, unit commitments, and economic dispatches. Short-term load forecasting (STLF), which predicts power loads for a few days, plays a vital role in the reliable, safe, and efficient operation of a power system. Currently, two main challenges are faced by existing STLF prediction models. The first involves how to fuse multiscale electricity load data to obtain a high-performance model and remove data noise after integration. The second involves how to improve the local optimal solution despite the sample quality problem. To address the above issues, this paper proposes a multiscale electricity load data fusion- and STLF-based short time series prediction model built on a sparse deep autoencoder and self-paced learning (SPL). A sparse deep autoencoder was used to solve the multiscale data fusion problem with data noise. Furthermore, SPL was utilized to solve the local optimal solution problem. The experimental results showed that our model was better than the existing STLF prediction models by more than 15.89% in terms of the mean squared error (MSE) indicator.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Short-term load forecasting based on deep learning model
    Kim D.
    Jin-Jo H.
    Park J.-B.
    Roh J.H.
    Kim M.S.
    Transactions of the Korean Institute of Electrical Engineers, 2019, 68 (09): : 1094 - 1099
  • [2] Short-Term Load Forecasting Based on a Hybrid Deep Learning Model
    Agana, Norbert A.
    Oleka, Emmanuel
    Awogbami, Gabriel
    Homaifar, Abdollah
    IEEE SOUTHEASTCON 2018, 2018,
  • [3] Short-Term Electricity Load Forecasting Based on Improved Data Decomposition and Hybrid Deep-Learning Models
    Chen, Jiayu
    Liu, Lisang
    Guo, Kaiqi
    Liu, Shurui
    He, Dongwei
    APPLIED SCIENCES-BASEL, 2024, 14 (14):
  • [4] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    INFORMATION, 2021, 12 (02) : 1 - 21
  • [5] Multiscale-integrated deep learning approaches for short-term load forecasting
    Yang, Yang
    Gao, Yuchao
    Wang, Zijin
    Li, Xi'an
    Zhou, Hu
    Wu, Jinran
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2024, 15 (12) : 6061 - 6076
  • [6] Improved short-term electricity load forecasting using extreme learning machines
    Prasad, Das Shom
    Laharika, Vidiyala
    Achray, N. Sangita
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON BIG DATA ANALYTICS AND COMPUTATIONAL INTELLIGENCE (ICBDAC), 2017, : 5 - 10
  • [7] Short-term building electricity load forecasting with a hybrid deep learning method
    Chen, Wenhao
    Rong, Fei
    Lin, Chuan
    ENERGY AND BUILDINGS, 2025, 330
  • [8] Short-Term Load Forecasting Based on VMD and Combined Deep Learning Model
    Wang, Nier
    Xue, Sheng
    Li, Zhanming
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2023, 18 (07) : 1067 - 1075
  • [9] Deep-learning-based short-term electricity load forecasting: A real case application
    Yazici, Ibrahim
    Beyca, Omer Faruk
    Delen, Dursun
    Engineering Applications of Artificial Intelligence, 2022, 109
  • [10] Deep-learning-based short-term electricity load forecasting: A real case application
    Yazici, Ibrahim
    Beyca, Omer Faruk
    Delen, Dursun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 109