Hierarchical feature fusion for visual tracking

被引:0
作者
Makris, Alexandros [1 ]
Kosmopoulos, Dimitrios [1 ]
Perantonis, Stavros [1 ]
Theodoridis, Sergios [2 ]
机构
[1] NCSR Demokritos, Inst Informat & Telecommun, Comp Intelligence Lab, 15310 Aghia Paraskevi, Athens, Greece
[2] Univ Athens, Dept Informat, Athens 15771, Greece
来源
2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7 | 2007年
关键词
tracking; sequential Monte Carlo;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method for object tracking in video sequences is presented. This method exploits the benefits of particle filters to tackle the multimodal distributions emerging from cluttered scenes. The tracked object is described by several models of different complexity, which are probabilistically linked together. The parameter update for each model takes place hierarchically so that the simpler models, which are updated first, can guide the search in the parameter space of the more complex models to relevant regions. This strategy improves the target representation because of the multiple models and reduces the overall complexity. The likelihood for each object model is calculated using one or more visual cues thus increasing the robustness of the proposed algorithm. Our method is evaluated by fusing on salient points and contour models and we demonstrate its effectiveness.
引用
收藏
页码:3085 / +
页数:2
相关论文
共 21 条
[1]   An introduction to MCMC for machine learning [J].
Andrieu, C ;
de Freitas, N ;
Doucet, A ;
Jordan, MI .
MACHINE LEARNING, 2003, 50 (1-2) :5-43
[2]  
[Anonymous], INT WORKSH COMP VIS
[3]  
BOHYUNG H, 2005, IEEE INT C, V2, P442
[4]  
Chen HT, 2004, INT C PATT RECOG, P736
[5]   On sequential Monte Carlo sampling methods for Bayesian filtering [J].
Doucet, A ;
Godsill, S ;
Andrieu, C .
STATISTICS AND COMPUTING, 2000, 10 (03) :197-208
[6]  
*EC, 2001, 200137450 IST CAVIAR
[7]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[8]   CONDENSATION - Conditional density propagation for visual tracking [J].
Isard, M ;
Blake, A .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 1998, 29 (01) :5-28
[9]  
Isard M, 2001, EIGHTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOL II, PROCEEDINGS, P34, DOI 10.1109/ICCV.2001.937594
[10]  
ISARD M, 1998, P EUR C COMP VIS, V1, P767