MRA-SNet: Siamese Networks of Multiscale Residual and Attention for Change Detection in High-Resolution Remote Sensing Images

被引:19
作者
Yang, Xin [1 ]
Hu, Lei [1 ]
Zhang, Yongmei [2 ]
Li, Yunqing [1 ]
机构
[1] Jiangxi Normal Univ, Sch Comp & Informat Engn, Nanchang 330022, Jiangxi, Peoples R China
[2] North China Univ Technol, Sch Informat Sci & Technol, Beijing 100144, Peoples R China
基金
中国国家自然科学基金;
关键词
high-resolution remote sensing images; change detection; Multi-Res block; Attention Gates; Siamese network; CLASSIFICATION; MAD;
D O I
10.3390/rs13224528
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth's surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.
引用
收藏
页数:21
相关论文
共 57 条
[1]   Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering [J].
Anderson, Peter ;
He, Xiaodong ;
Buehler, Chris ;
Teney, Damien ;
Johnson, Mark ;
Gould, Stephen ;
Zhang, Lei .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6077-6086
[2]  
[Anonymous], 2015, ACS SYM SER
[3]  
[Anonymous], 2014, NEURAL INFORM PROCES
[4]   Comprehensive survey of deep learning in remote sensing: theories, tools, and challenges for the community [J].
Ball, John E. ;
Anderson, Derek T. ;
Chan, Chee Seng .
JOURNAL OF APPLIED REMOTE SENSING, 2017, 11
[5]   Change Detection in Optical Aerial Images by a Multilayer Conditional Mixed Markov Model [J].
Benedek, Csaba ;
Sziranyi, Tamas .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (10) :3416-3430
[6]   Earthquake Damage Assessment of Buildings Using VHR Optical and SAR Imagery [J].
Brunner, Dominik ;
Lemoine, Guido ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2010, 48 (05) :2403-2420
[7]   Automatic analysis of the difference image for unsupervised change detection [J].
Bruzzone, L ;
Prieto, DF .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1171-1182
[8]   Automatic change detection in high-resolution remote-sensing images by means of level set evolution and support vector machine classification [J].
Cao, Guo ;
Li, Yupeng ;
Liu, Yazhou ;
Shang, Yanfeng .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (16) :6255-6270
[9]   Unsupervised Change Detection in Satellite Images Using Principal Component Analysis and k-Means Clustering [J].
Celik, Turgay .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2009, 6 (04) :772-776
[10]   SCA-CNN: Spatial and Channel-wise Attention in Convolutional Networks for Image Captioning [J].
Chen, Long ;
Zhang, Hanwang ;
Xiao, Jun ;
Nie, Liqiang ;
Shao, Jian ;
Liu, Wei ;
Chua, Tat-Seng .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6298-6306