An energy stable finite difference method for anisotropic surface diffusion on closed curves

被引:1
作者
Lai, Ming-Chih [1 ]
Park, Sangbeom [2 ]
Seol, Yunchang [2 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Appl Math, 1001 Ta Hsueh Rd, Hsinchu 30010, Taiwan
[2] Kyungpook Natl Univ, Dept Math, Daegu 41566, South Korea
基金
新加坡国家研究基金会;
关键词
Anisotropic surface diffusion; Finite difference method; Energy stable scheme; ELEMENT-METHOD; CURVATURE; INTERFACE; EVOLUTION; MOTION; FILMS;
D O I
10.1016/j.aml.2021.107848
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we develop an energy stable finite difference method for the problem of curve motion under anisotropic surface diffusion. The motion of curve by anisotropic surface diffusion is governed by the fourth-order (highly nonlinear) geometric evolution equation. As in Li and Bao (2021), we first split the fourthorder evolution equation into two second-order equations, where the position vector of curve and the weighted curvature are treated as unknowns. Instead of using the arclength parameter, we introduce a Lagrangian coordinate parameter such that a closed curve can be parametrized over a fixed interval so that the equations can be represented using the new parameter. We then propose a linearly semiimplicit finite difference method to discretize these two equations, and prove that the scheme satisfies discrete energy dissipation so it is energy stable under suitable condition on the anisotropic surface energy. To show the applicability of our present method, we perform several numerical tests on various initial curves and different anisotropic energies. The numerical results show that our scheme is indeed energy dissipative and conserves even the total area well. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:12
相关论文
共 22 条
[1]   Electromigration of intergranular voids in metal films for microelectronic interconnects [J].
Averbuch, A ;
Israeli, M ;
Ravve, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 2003, 186 (02) :481-502
[2]   A finite element method for surface diffusion:: the parametric case [J].
Bänsch, E ;
Morin, P ;
Nochetto, RH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (01) :321-343
[3]   A STRUCTURE-PRESERVING PARAMETRIC FINITE ELEMENT METHOD FOR SURFACE DIFFUSION [J].
Bao, Weizhu ;
Zhao, Quan .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (05) :2775-2799
[4]   A parametric finite element method for solid-state dewetting problems with anisotropic surface energies [J].
Bao, Weizhu ;
Jiang, Wei ;
Wang, Yan ;
Zhao, Quan .
JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 :380-400
[5]   A parametric finite element method for fourth order geometric evolution equations [J].
Barrett, John W. ;
Garcke, Harald ;
Nuernberg, Robert .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 222 (01) :441-467
[6]   A level set approach to anisotropic flows with curvature regularization [J].
Burger, Martin ;
HauBer, Frank ;
Stoecker, Christina ;
Voigt, Axel .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) :183-205
[7]   OVERVIEW NO-113 - SURFACE MOTION BY SURFACE-DIFFUSION [J].
CAHN, JW ;
TAYLOR, JE .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (04) :1045-1063
[8]   Anisotropic geometric diffusion in surface processing [J].
Clarenz, U ;
Diewald, U ;
Rumpf, M .
VISUALIZATION 2000, PROCEEDINGS, 2000, :397-405
[9]  
Datta B.N., 2004, Numerical Methods for Linear Control Systems: Design and Analysis
[10]   ON THE MOTION OF A PHASE INTERFACE BY SURFACE-DIFFUSION [J].
DAVI, F ;
GURTIN, ME .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1990, 41 (06) :782-811