Fatigue strength plateau induced by microstructure inhomogeneity

被引:45
作者
Liu, R. [1 ,2 ]
Tian, Y. Z. [1 ]
Zhang, Z. J. [1 ]
Zhang, P. [1 ]
Zhang, Z. F. [1 ,2 ]
机构
[1] Chinese Acad Sci, Shenyang Natl Lab Mat Sci, Inst Met Res, 72 Wenhua Rd, Shenyang 110016, Liaoning, Peoples R China
[2] Univ Chinese Acad Sci, 19 Yuquan Rd, Beijing 100049, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2017年 / 702卷
基金
中国国家自然科学基金;
关键词
Cu-Al alloy; High-cycle fatigue (HCF); Fatigue strength; Fatigue damage localization; Cold rolling; Recrystallization; Microstructure homogeneity; HIGH-CYCLE FATIGUE; CRACK INITIATION; GRAIN-SIZE; DEFORMATION; FAILURE; DAMAGE; BEHAVIOR; ALLOYS; PROPAGATION; MECHANISMS;
D O I
10.1016/j.msea.2017.07.026
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fatigue damage localization is a critical problem which greatly impacts on the fatigue strength improvement. As a main cause of fatigue damage concentration, the microstructure inhomogeneity of cold-rolled and annealed Cu-5at%Al alloy has been paid much attention in this study. A notable plateau with constant fatigue strength is discovered in the region of partially recrystallized microstructures which share similar maximum grain size. The existence of such "fatigue strength plateau" suggests that in some specific cases, fatigue strength would vary with neither the tensile strength nor the average grain size, since the fatigue resistance of the damage localized regions remains unchanged.
引用
收藏
页码:259 / 264
页数:6
相关论文
共 39 条
[1]   Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys [J].
An, X. H. ;
Wu, S. D. ;
Wang, Z. G. ;
Zhang, Z. F. .
ACTA MATERIALIA, 2014, 74 :200-214
[2]   FUNDAMENTAL-ASPECTS OF LOW AMPLITUDE CYCLIC DEFORMATION IN FACE-CENTERED CUBIC-CRYSTALS [J].
BASINSKI, ZS ;
BASINSKI, SJ .
PROGRESS IN MATERIALS SCIENCE, 1992, 36 :89-148
[3]  
Basquin O.H., 1910, Proc Am Soc Test Mater, V10, P625
[4]   Failure mechanisms of automotive metallic alloys in very high cycle fatigue range [J].
Bayraktar, Emin ;
Garcias, Israel Marines ;
Bathias, Claude .
INTERNATIONAL JOURNAL OF FATIGUE, 2006, 28 (11) :1590-1602
[5]   Ultra-long cycle fatigue of high-strength carbon steels part II: estimation of fatigue limit for failure from internal inclusions [J].
Chapetti, MD ;
Tagawa, T ;
Miyata, T .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2003, 356 (1-2) :236-244
[6]   Prediction of multiaxial high cycle fatigue at small scales based on a micro-mechanical model [J].
Eslami, R. ;
Riesch-Oppermann, H. ;
Kraft, O. .
INTERNATIONAL JOURNAL OF FATIGUE, 2016, 83 :66-74
[7]   Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials [J].
Fatemi, A ;
Yang, L .
INTERNATIONAL JOURNAL OF FATIGUE, 1998, 20 (01) :9-34
[8]   OVERVIEW NO 112 - THE CYCLIC PROPERTIES OF ENGINEERING MATERIALS [J].
FLECK, NA ;
KANG, KJ ;
ASHBY, MF .
ACTA METALLURGICA ET MATERIALIA, 1994, 42 (02) :365-381
[9]  
Frorrest P. G., 1962, FATIGUE OF METALS