Acceleration of convergence of some infinite sequences {An) whose asymptotic expansions involve fractional powers of n via the d(m) transformation

被引:0
作者
Sidi, Avram [1 ]
机构
[1] Technion Israel Inst Technol, Dept Comp Sci, IL-32000 Haifa, Israel
关键词
Acceleration of convergence; Extrapolation lInfinite series; Infinite products; Asymptotic expansions; Fractional powers; d(m) transformation; W-algorithm; RICHARDSON EXTRAPOLATION PROCESS; PROCESS GREP((1)); ALGORITHM; INTEGRALS;
D O I
10.1007/s11075-019-00870-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we discuss the application of the author's d(m) transformation to accelerate the convergence of infinite series Enct la, when the terms an have asymptotic expansions that can be expressed in the form [m ioo an (n!)slm exp E as n oo, s integer. i=o i=o We discuss the implementation of the d(m) transformation via the recursive Walgorithm of the author. We show how to apply this transformation and how to assess in a reliable way the accuracies of the approximations it produces, whether the series converge or they diverge. We classify the different cases that exhibit unique numerical stability issues in floating-point arithmetic. We show that the d(m) transformation can also be used efficiently to accelerate the convergence of infinite products un + vo, where vn Etoein t/Tn i/rn as n Do, t > m + 1 an integer. Finally, we give several numerical examples that attest the high efficiency of the cl(m) transformation for the different cases.
引用
收藏
页码:1409 / 1445
页数:37
相关论文
共 25 条
[1]  
[Anonymous], 1926, Proceedings of the Royal Society of Edinburgh, DOI [DOI 10.1017/S0370164600022070, 10.1017/S0370164600022070]
[2]  
[Anonymous], 1956, Proc. Camb. Phil. Soc.
[3]  
[Anonymous], INTRO NUMERICAL ANAL
[4]   Analytic theory of singular difference equations. [J].
Birkhoff, GD ;
Trjitzinsky, WJ .
ACTA MATHEMATICA, 1933, 60 (01) :1-89
[5]   Formal theory of irregular linear difference equations [J].
Birkhoff, GD .
ACTA MATHEMATICA, 1930, 54 (01) :205-246
[6]  
Brezinski C., 1975, Calcolo, V12, P317, DOI 10.1007/BF02575753
[7]   Extensions of Drummond's process for convergence acceleration [J].
Brezinski, C. ;
Redivo-Zaglia, M. .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (12) :1231-1241
[8]   Accelerating infinite products [J].
Cohen, AM ;
Levin, D .
NUMERICAL ALGORITHMS, 1999, 22 (02) :157-165
[9]  
DRUMMOND JE, 1976, J AUSTRAL MATH SOC B, V19, P416, DOI DOI 10.1017/S0334270000001284
[10]   AN ALGORITHM FOR A GENERALIZATION OF THE RICHARDSON EXTRAPOLATION PROCESS [J].
FORD, WF ;
SIDI, A .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (05) :1212-1232