Multi-Omics Analysis of Fatty Acid Metabolism in Thyroid Carcinoma

被引:26
|
作者
Lu, Jinghui [1 ]
Zhang, Yankun [2 ,3 ]
Sun, Min [1 ,4 ]
Ding, Changyuan [5 ]
Zhang, Lei [6 ]
Kong, Youzi [7 ,8 ]
Cai, Meng [9 ]
Miccoli, Paolo [10 ]
Ma, Chunhong [2 ,3 ]
Yue, Xuetian [7 ,8 ]
机构
[1] Shandong Univ, Dept Hernia & Abdominal Wall Surg, Gen Surg, Qilu Hosp,Cheeloo Coll Med, Jinan, Peoples R China
[2] Shandong Univ, Key Lab Expt Teratol, Minist Educ, Sch Basic Med Sci,Cheeloo Coll Med, Jinan, Peoples R China
[3] Shandong Univ, Dept Immunol, Sch Basic Med Sci, Cheeloo Coll Med, Jinan, Peoples R China
[4] Shandong Univ, Lab Basic Med Sci, Qilu Hosp, Cheeloo Coll Med, Jinan, Peoples R China
[5] Shandong Univ, Dept Thyroid Surg, Gen Surg, Qilu Hosp,Cheeloo Coll Med, Jinan, Peoples R China
[6] Shandong Univ, Dept Obstet, Second Hosp, Cheeloo Coll Med, Jinan, Peoples R China
[7] Shandong Univ, Key Lab Expt Teratol, Minist Educ, Sch Basic Med Sci,Cheeloo Coll Med, Jinan, Peoples R China
[8] Shandong Univ, Dept Cell Biol, Sch Basic Med Sci, Cheeloo Coll Med, Jinan, Peoples R China
[9] Shandong First Med Univ, Dept Ultrasound, Shandong Prov Hosp, Jinan, Peoples R China
[10] Univ Pisa, Dept Surg, Pisa, Italy
来源
FRONTIERS IN ONCOLOGY | 2021年 / 11卷
基金
中国国家自然科学基金;
关键词
fatty acid metabolism; multi-omics analysis; thyroid carcinoma; therapeutic target; FATP2; CPT1A; LPL; ACYL-COA SYNTHETASE; LIPOPROTEIN-LIPASE; LIPID-METABOLISM; TRANSPORT; CANCER; SURVIVAL;
D O I
10.3389/fonc.2021.737127
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
ObjectivePapillary thyroid carcinoma (PTC) accounts for the majority of thyroid cancer and affects a large number of individuals. The pathogenesis of PTC has not been completely elucidated thus far. Metabolic reprogramming is a common feature in tumours. Our previous research revealed the reprogramming of lipid metabolism in PTC. Further studies on lipid metabolism reprogramming may help elucidate the pathogenesis of PTC. MethodsClinical samples of PTC and para-tumour tissue were analysed using lipidomic, proteomic, and metabolomic approaches. A multi-omics integrative strategy was adopted to identify the important pathways in PTC. The findings were further confirmed using western blotting, tissue microarray, bioinformatics, and cell migration assays. ResultsMulti-omics data and the results of integrated analysis revealed that the three steps of fatty acid metabolism (hydrolysis, transportation, and oxidation) were significantly enhanced in PTC. Especially, the expression levels of LPL, FATP2, and CPT1A, three key enzymes in the respective steps, were elevated in PTC. Moreover, LPL, FATP2 and CPT1A expression was associated with the TNM stage, lymph node metastasis of PTC. Moreover, high levels of FATP2 and CPT1A contributed to poor prognosis of PTC. In addition, ectopic overexpression of LPL, FATP2 and CPT1A can each promote the migration of thyroid cancer cells. ConclusionsOur data suggested that enhanced fatty acid metabolism supplied additional energy and substrates for PTC progression. This may help elucidating the underlying mechanism of PTC pathogenesis and identifying the potential therapeutic targets for PTC.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Systematic analysis of MCM3 in pediatric medulloblastoma via multi-omics analysis
    Cao, Liangliang
    Zhao, Yang
    Liang, Zhuangzhuag
    Yang, Jian
    Wang, Jiajia
    Tian, Shuangwei
    Wang, Qinhua
    Wang, Baocheng
    Zhao, Heng
    Jiang, Feng
    Ma, Jie
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [42] Integrative multi-omics analysis reveals a novel subtype of hepatocellular carcinoma with biological and clinical relevance
    Li, Shizhou
    Lin, Yan
    Gao, Xing
    Zeng, Dandan
    Cen, Weijie
    Su, Yuejiao
    Su, Jingting
    Zeng, Can
    Huang, Zhenbo
    Zeng, Haoyu
    Huang, Shilin
    Tang, Minchao
    Li, Xiaoqing
    Luo, Min
    Huang, Zhihu
    Liang, Rong
    Ye, Jiazhou
    FRONTIERS IN IMMUNOLOGY, 2024, 15
  • [43] Multi-omics analysis of pyroptosis regulation patterns and characterization of tumor microenvironment in patients with hepatocellular carcinoma
    Shang, Bingbing
    Wang, Ruohan
    Qiao, Haiyan
    Zhao, Xixi
    Wang, Liang
    Sui, Shaoguang
    PEERJ, 2023, 11
  • [44] Identification of DNA methylation patterns and biomarkers for clear-cell renal cell carcinoma by multi-omics data analysis
    Liu, Pengfei
    Tian, Weidong
    PEERJ, 2020, 8
  • [45] Identification of Tumor Mutation Burden and Immune Infiltrates in Hepatocellular Carcinoma Based on Multi-Omics Analysis
    Yin, Lu
    Zhou, Liuzhi
    Xu, Rujun
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2021, 7
  • [46] Multi-omics analysis and validation of the tumor microenvironment of hepatocellular carcinoma under RNA modification patterns
    Yao, Yuanqian
    Lv, Jianlin
    Wang, Guangyao
    Hong, Xiaohua
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (10) : 18318 - 18344
  • [47] Bile multi-omics analysis classifies lipid species and microbial peptides predictive of carcinoma of gallbladder
    Sharma, Nupur
    Yadav, Manisha
    Tripathi, Gaurav
    Mathew, Babu
    Bindal, Vasundhra
    Falari, Sanyam
    Pamecha, Viniyendra
    Maras, Jaswinder Singh
    HEPATOLOGY, 2022, 76 (04) : 920 - 935
  • [48] Integrated Multi-Omics Data Analysis Reveals Associations Between Glycosylation and Stemness in Hepatocellular Carcinoma
    Liu, Peiyan
    Zhou, Qi
    Li, Jia
    FRONTIERS IN ONCOLOGY, 2022, 12
  • [49] The role of transketolase in the immunotherapy and prognosis of hepatocellular carcinoma: a multi-omics approach
    Gu, Xuan-Yu
    Zhou, Zheng-Jun
    Yao, Hua
    Yang, Jia-Li
    Gu, Jin
    Mu, Rui
    Zhao, Li-Jin
    FRONTIERS IN IMMUNOLOGY, 2025, 16
  • [50] A multi-omics signature to predict the prognosis of invasive ductal carcinoma of the breast
    Lin, Zhiquan
    He, Yu
    Qiu, Chaoran
    Yu, Qihe
    Huang, Hui
    Zhang, Yiwen
    Li, Weiwen
    Qiu, Tian
    Li, Xiaoping
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 151