Aqueous Zn-ion batteries: Cathode materials and analysis

被引:21
|
作者
Shang, Yuan [1 ]
Kundu, Dipan [1 ,2 ]
机构
[1] UNSW Sydney, Sch Chem Engn, Kensington, NSW 2052, Australia
[2] UNSW Sydney, Sch Mech & Mfg Engn, Kensington, NSW 2052, Australia
关键词
CHEMISTRY; OXIDE;
D O I
10.1016/j.coelec.2022.100954
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Reversible aqueous Zn-ion electrochemistry has revived the interest in aqueous batteries, thanks to the attractive features conferred by the energy dense metallic zinc anode and safe and inexpensive aqueous electrolytes. Ultimately, the practical development of the technology would depend significantly on the cathode hosts' electrochemistry, which is strongly influenced by the structural and functional attributes of host materials. We introspect that here while reviewing different inorganic host chemistries and some notable findings that can potentially shape future developments. An assessment of the energy density and its relation to the inactive components of the cell is also presented. Finally, we take a critical look at the evolving ambiguity around the analysis of the charge storage mechanism and raise a few questions on mechanistic understanding and lack thereof, which are crucial to address shortcomings in the cathode performance.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Engineering hosts for Zn anodes in aqueous Zn-ion batteries
    Zhu, Yunhai
    Liang, Guojin
    Cui, Xun
    Liu, Xueqin
    Zhong, Haixia
    Zhi, Chunyi
    Yang, Yingkui
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (02) : 369 - 385
  • [22] A high-voltage activated high-erformance cathode for aqueous Zn-ion batteries
    Zhu, Kaiyue
    Wu, Tao
    Huang, Kevin
    ENERGY STORAGE MATERIALS, 2021, 38 : 473 - 481
  • [23] Layered hydrated vanadium oxide as highly reversible intercalation cathode for aqueous Zn-ion batteries
    Wang, Pinji
    Shi, Xiaodong
    Wu, Zhuoxi
    Guo, Shan
    Zhou, Jiang
    Liang, Shuquan
    CARBON ENERGY, 2020, 2 (02) : 294 - 301
  • [24] Vanadium hexacyanoferrate with two redox active sites as cathode material for aqueous Zn-ion batteries
    Zhang, Yanjun
    Wang, Yao
    Lu, Liang
    Sun, Chunwen
    Yu, Denis Y. W.
    JOURNAL OF POWER SOURCES, 2021, 484
  • [25] High-performance rechargeable aqueous Zn-ion batteries with a poly(benzoquinonyl sulfide) cathode
    Dawut, Gulbahar
    Lu, Yong
    Miao, Licheng
    Chen, Jun
    INORGANIC CHEMISTRY FRONTIERS, 2018, 5 (06): : 1391 - 1396
  • [26] A novel and improved hydrophilic vanadium oxide-based cathode for aqueous Zn-ion batteries
    Zhang, Qiang
    Zhang, Yi
    Fu, Liangjie
    Liu, Sainan
    Yang, Huaming
    ELECTROCHIMICA ACTA, 2020, 354
  • [27] Stabilizing Zinc Hexacyanoferrate Cathode by Low Contents of Cs Cations for Aqueous Zn-Ion Batteries
    Pan, Zhiqiu
    Ni, Gang
    Li, Yi
    Shi, Yinuo
    Zhu, Fuxiang
    Cui, Peng
    Zhou, Chenggang
    CHEMSUSCHEM, 2024, 17 (21)
  • [28] Improved performance of Cu ion implanted δ-MnO2 cathode material for aqueous Zn-ion batteries
    Ma, Shu-Min
    Wang, Tong-Xian
    Deng, Zun-Yi
    Zheng, Xiao-Song
    Wang, Bei-Bei
    Feng, Hong-Jian
    PHYSICS LETTERS A, 2022, 451
  • [29] Sulfolane as an additive to regulate Zn anode in aqueous Zn-ion batteries
    Wang, Yan
    Huang, Haiji
    Xie, Dongmei
    Wang, Hao
    Zhao, Jiachang
    Zeng, Xiaohui
    Mao, Jianfeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 966
  • [30] Mg ion pre-intercalated MnO2 nanospheres as high-performance cathode materials for aqueous Zn-ion batteries
    Xu, Pu
    Yi, Huimin
    Shi, Gejun
    Xiong, Zhennan
    Hu, Yingying
    Wang, Ruilin
    Zhang, Huihui
    Wang, Baofeng
    DALTON TRANSACTIONS, 2022, 51 (12) : 4695 - 4703