Very large Bayesian multinets for text classification

被引:4
作者
Klopotek, MA [1 ]
机构
[1] Polish Acad Sci, Inst Comp Sci, PL-01237 Warsaw, Poland
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2005年 / 21卷 / 07期
关键词
Bayesian; multinets; classification;
D O I
10.1016/j.future.2004.03.007
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents a newly developed algorithm learning very large tree-like Bayesian networks from data and exploits it to create a Bayesian multinet (BMN) classifier for natural language text documents. Results of empirical evaluation of this BMN classifier are presented. The study suggests that tree-like Bayesian networks are able to handle a classification task in 100 000 variables with sufficient speed and accuracy. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:1068 / 1082
页数:15
相关论文
共 41 条
[21]  
Klopotek MA, 2003, FUND INFORM, V58, P105
[22]  
Klopotek MA, 2002, FUND INFORM, V49, P349
[23]  
Klopotek MA, 2001, ADV SOFT COMP, P179
[24]  
KLOPOTEK MA, 2002, SZTUCZNA INTELIGENCJ, P13
[25]  
KLOPOTEK MA, FDN INTELLIGENT SYST, V2366, P114
[26]  
KLOPOTEK MA, 2000, CYBERNET SYST, V2, P707
[27]  
KLOPOTEK MA, 2000, DEMONSTRATIO MATH, V33, P181
[28]  
KLOPOTEK MA, 2003, P INT C COMP SCI ICC, V1, P397
[29]  
KLOPOTEK MA, 1999, DEMONSTRATIO MATH, V32, P207
[30]  
KLOPOTEK MA, 2000, DEMONSTRATION MATH, V33, P419