Human metabolic response to systemic inflammation: assessment of the concordance between experimental endotoxemia and clinical cases of sepsis/SIRS

被引:60
作者
Kamisoglu, Kubra [1 ]
Haimovich, Beatrice [2 ]
Calvano, Steve E. [2 ]
Coyle, Susette M. [2 ]
Corbett, Siobhan A. [2 ]
Langley, Raymond J. [3 ]
Kingsmore, Stephen F. [4 ,5 ]
Androulakis, Ioannis P. [1 ,2 ,6 ]
机构
[1] Rutgers State Univ, Dept Chem & Biochem Engn, Piscataway, NJ 08854 USA
[2] Univ Med & Dent New Jersey, Robert Wood Johnson Med Sch, Dept Surg, New Brunswick, NJ 08901 USA
[3] Lovelace Resp Res Inst, Dept Resp Immunol, Albuquerque, NM 87108 USA
[4] Ctr Pediat Genom Med, Childrens Mercy, Kansas City, MO 64108 USA
[5] Univ Missouri, Dept Pediat & Obstet Gynecol, Kansas City, MO 64108 USA
[6] Rutgers State Univ, Dept Biomed Engn, Piscataway, NJ 08854 USA
基金
美国国家卫生研究院;
关键词
ANIMAL-MODELS; PHYSIOLOGICAL VARIABILITY;
D O I
10.1186/s13054-015-0783-2
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Introduction: Two recent, independent, studies conducted novel metabolomics analyses relevant to human sepsis progression; one was a human model of endotoxin (lipopolysaccharide (LPS)) challenge (experimental endotoxemia) and the other was community acquired pneumonia and sepsis outcome diagnostic study (CAPSOD). The purpose of the present study was to assess the concordance of metabolic responses to LPS and community-acquired sepsis. Methods: We tested the hypothesis that the patterns of metabolic response elicited by endotoxin would agree with those in clinical sepsis. Alterations in the plasma metabolome of the subjects challenged with LPS were compared with those of sepsis patients who had been stratified into two groups: sepsis patients with confirmed infection and non-infected patients who exhibited systemic inflammatory response syndrome (SIRS) criteria. Common metabolites between endotoxemia and both these groups were individually identified, together with their direction of change and functional classifications. Results: Response to endotoxemia at the metabolome level elicited characteristics that agree well with those observed in sepsis patients despite the high degree of variability in the response of these patients. Moreover, some distinct features of SIRS have been identified. Upon stratification of sepsis patients based on 28-day survival, the direction of change in 21 of 23 metabolites was the same in endotoxemia and sepsis survival groups. Conclusions: The observed concordance in plasma metabolomes of LPS-treated subjects and sepsis survivors strengthens the relevance of endotoxemia to clinical research as a physiological model of community-acquired sepsis, and gives valuable insights into the metabolic changes that constitute a homeostatic response. Furthermore, recapitulation of metabolic differences between sepsis non-survivors and survivors in LPS-treated subjects can enable further research on the development and assessment of rational clinical therapies to prevent sepsis mortality. Compared with earlier studies which focused exclusively on comparing transcriptional dynamics, the distinct metabolomic responses to systemic inflammation with or without confirmed infection, suggest that the metabolome is much better at differentiating these pathophysiologies. Finally, the metabolic changes in the recovering patients shift towards the LPS-induced response pattern strengthening the notion that the metabolic, as well as transcriptional responses, characteristic to the endotoxemia model represent necessary and "healthy" responses to infectious stimuli.
引用
收藏
页数:10
相关论文
共 41 条
  • [1] Human Endotoxemia as a model of systemic inflammation
    Andreasen, A. S.
    Krabbe, K. S.
    Krogh-Madsen, R.
    Taudorf, S.
    Pedersen, B. K.
    Moller, K.
    [J]. CURRENT MEDICINAL CHEMISTRY, 2008, 15 (17) : 1697 - 1705
  • [2] Severe Sepsis and Septic Shock REPLY
    Angus, Derek C.
    van der Poll, Tom
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2013, 369 (21) : 2063 - 2063
  • [3] CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING
    BENJAMINI, Y
    HOCHBERG, Y
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) : 289 - 300
  • [4] Animal models of sepsis: Setting the stage
    Buras, JA
    Holzmann, B
    Sitkovsky, M
    [J]. NATURE REVIEWS DRUG DISCOVERY, 2005, 4 (10) : 854 - 865
  • [5] Cain D., 2014, Intensive Care Medicine Experimental, V2, P1
  • [6] A network-based analysis of systemic inflammation in humans
    Calvano, SE
    Xiao, WZ
    Richards, DR
    Felciano, RM
    Baker, HV
    Cho, RJ
    Chen, RO
    Brownstein, BH
    Cobb, JP
    Tschoeke, SK
    Miller-Graziano, C
    Moldawer, LL
    Mindrinos, MN
    Davis, RW
    Tompkins, RG
    Lowry, SF
    [J]. NATURE, 2005, 437 (7061) : 1032 - 1037
  • [7] Experimental Human Endotoxemia: A Model of the Systemic Inflammatory Response Syndrome?
    Calvano, Steve E.
    Coyle, Susette M.
    [J]. SURGICAL INFECTIONS, 2012, 13 (05) : 293 - 299
  • [8] Animal models of sepsis and shock: A review and lessons learned
    Deitch, EA
    [J]. SHOCK, 1998, 9 (01): : 1 - 11
  • [9] Integrated, Nontargeted Ultrahigh Performance Liquid Chromatography/Electrospray Ionization Tandem Mass Spectrometry Platform for the Identification and Relative Quantification of the Small-Molecule Complement of Biological Systems
    Evans, Anne M.
    DeHaven, Corey D.
    Barrett, Tom
    Mitchell, Matt
    Milgram, Eric
    [J]. ANALYTICAL CHEMISTRY, 2009, 81 (16) : 6656 - 6667
  • [10] Modeling endotoxin-induced systemic inflammation using an indirect response approach
    Foteinou, P. T.
    Calvano, S. E.
    Lowry, S. F.
    Androulakis, I. P.
    [J]. MATHEMATICAL BIOSCIENCES, 2009, 217 (01) : 27 - 42