Stochastic coalescence in Lagrangian cloud microphysics

被引:35
作者
Dziekan, Piotr [1 ]
Pawlowska, Hanna [1 ]
机构
[1] Univ Warsaw, Inst Geophys, Fac Phys, Warsaw, Poland
关键词
DROPLET GROWTH; COLLECTION EQUATION; NUMERICAL-SOLUTION; SIZE DISTRIBUTION; MODEL; SIMULATIONS; TURBULENCE; PRECIPITATION; FLUCTUATIONS; TRACKING;
D O I
10.5194/acp-17-13509-2017
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Stochasticity of the collisional growth of cloud droplets is studied using the super-droplet method (SDM) of Shima et al. (2009). Statistics are calculated from ensembles of simulations of collision-coalescence in a single well-mixed cell. The SDM is compared with direct numerical simulations and the master equation. It is argued that SDM simulations in which one computational droplet represents one real droplet are at the same level of precision as the master equation. Such simulations are used to study fluctuations in the autoconversion time, the sol-gel transition and the growth rate of lucky droplets, which is compared with a theoretical prediction. The size of the coalescence cell is found to strongly affect system behavior. In small cells, correlations in droplet sizes and droplet depletion slow down rain formation. In large cells, collisions between raindrops are more frequent and this can also slow down rain formation. The increase in the rate of collision between raindrops may be an artifact caused by assuming an overly large well-mixed volume. The highest ratio of rain water to cloud water is found in cells of intermediate sizes. Next, we use these precise simulations to determine the validity of more approximate methods: the Smoluchowski equation and the SDM with multiplicities greater than 1. In the latter, we determine how many computational droplets are necessary to correctly model the expected number and the standard deviation of the autoconversion time. The maximal size of a volume that is turbulently well mixed with respect to coalescence is estimated at V-mix = 1.5 x 10(-2) cm(3). The Smoluchowski equation is not valid in such small volumes. It is argued that larger volumes can be considered approximately well mixed, but such approximation needs to be supported by a comparison with fine-grid simulations that resolve droplet motion.
引用
收藏
页码:13509 / 13520
页数:12
相关论文
共 45 条
  • [31] Mason B. J., 2010, PHYS OF CLOUDS
  • [32] Lagrangian Tracking Simulation of Droplet Growth in Turbulence-Turbulence Enhancement of Autoconversion Rate
    Onishi, Ryo
    Matsuda, Keigo
    Takahashi, Keiko
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2015, 72 (07) : 2591 - 2607
  • [33] A new method for large-eddy simulations of clouds with Lagrangian droplets including the effects of turbulent collision
    Riechelmann, T.
    Noh, Y.
    Raasch, S.
    [J]. NEW JOURNAL OF PHYSICS, 2012, 14
  • [34] ROBERTSON D, 1974, J ATMOS SCI, V31, P1344, DOI 10.1175/1520-0469(1974)031<1344:MCSODG>2.0.CO
  • [35] 2
  • [36] SCOTT WT, 1967, J ATMOS SCI, V24, P221, DOI 10.1175/1520-0469(1967)024<0221:PSIDOC>2.0.CO
  • [37] 2
  • [38] Seesselberg M, 1996, ATMOS RES, V40, P33, DOI 10.1016/0169-8095(95)00024-0
  • [39] The super-droplet method for the numerical simulation of clouds and precipitation: A particle-based and probabilistic microphysics model coupled with a non-hydrostatic model
    Shima, S.
    Kusano, K.
    Kawano, A.
    Sugiyama, T.
    Kawahara, S.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2009, 135 (642) : 1307 - 1320
  • [40] A large-eddy model for cirrus clouds with explicit aerosol and ice microphysics and Lagrangian ice particle tracking
    Soelch, Ingo
    Kaercher, Bernd
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2010, 136 (653) : 2074 - 2093