Video-rate active incoherent millimeter-wave imaging in outdoor environments

被引:0
|
作者
Vakalis, Stavros [1 ]
Colon-Berrios, Jorge R. [1 ]
Chen, Daniel [1 ]
Nanzer, Jeffrey A. [1 ]
机构
[1] Michigan State Univ, E Lansing, MI 48824 USA
关键词
Millimeter-wave imaging; incoherent imaging; noise signals; digital interferometric antenna array; ANTENNAS;
D O I
10.1117/12.2618824
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Active incoherent millimeter-wave (AIM) imaging is a recently introduced imaging technique that combines the benefits of passive and active millimeter-wave imaging by using incoherent noise illumination to mimic the properties of thermal radiation. In this work, we investigate the performance of a video-rate AIM imager in an outdoor scenario. The use of active illumination overcomes challenges in other modalities such as sky reflections and other environmental signals. We use a 38 GHz active incoherent millimeter-wave camera with multiple noise transmitters to demonstrate imaging in outdoor scenarios at ranges of more than 9 m.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Toward Space-Time Incoherent Transmitter Design for Millimeter-Wave Imaging
    Vakalis, Stavros
    Chen, Daniel
    Nanzer, Jeffrey A.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2020, 19 (09): : 1471 - 1475
  • [32] Video-rate gigapixel imaging of the brain
    McConnell, Gail
    NATURE PHOTONICS, 2019, 13 (11) : 732 - 734
  • [33] Video-Rate Imaging with Undetected Photons
    Gilaberte Basset, Marta
    Hochrainer, Armin
    Toepfer, Sebastian
    Riexinger, Felix
    Bickert, Patricia
    Leon-Torres, Josue Ricardo
    Steinlechner, Fabian
    Graefe, Markus
    LASER & PHOTONICS REVIEWS, 2021, 15 (06)
  • [34] Video-rate gigapixel imaging of the brain
    Gail McConnell
    Nature Photonics, 2019, 13 : 732 - 734
  • [35] Video-Rate Spontaneous Raman Imaging
    Dunn, Lochlann
    Luo, Haokun
    Subedi, Nava R.
    Kasu, Ramachandran
    McDonald, Armando G.
    Christodoulides, Demetrios N.
    Vasdekis, Andreas E.
    LABEL-FREE BIOMEDICAL IMAGING AND SENSING, LBIS 2024, 2024, 12854
  • [36] Application of millimeter-wave photonics technology in passive millimeter-wave imaging
    Zhang, Yuedong
    Jiang, Yuesong
    Guo, Jingping
    He, Yuntao
    Wang, Haiyang
    INFRARED, MILLIMETER WAVE, AND TERAHERTZ TECHNOLOGIES, 2010, 7854
  • [37] ACTIVE MILLIMETER-WAVE PYROMETER
    WOSKOV, PP
    COHN, DR
    RHEE, DY
    THOMAS, P
    TITUS, CH
    SURMA, JE
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1995, 66 (08): : 4241 - 4248
  • [38] Millimeter-Wave Path Loss Models at 73 GHz in Indoor and Outdoor Airport Environments
    Khatun, Mahfuza
    Guo, Changyu
    Moro, Letizia
    Matolak, David
    Mehrpouyan, Hani
    2019 IEEE 90TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2019-FALL), 2019,
  • [39] Comparison of active millimeter-wave and acoustic imaging for weapon detection
    Sheen, DM
    Collins, HD
    Gribble, RP
    McMakin, DL
    SURVEILLANCE AND ASSESSMENT TECHNOLOGIES FOR LAW ENFORCEMENT, 1997, 2935 : 120 - 128
  • [40] Simulation of active cylindrical and planar millimeter-wave imaging systems
    Sheen, David M.
    Jones, A. Mark
    Hall, Thomas E.
    PASSIVE AND ACTIVE MILLIMETER-WAVE IMAGING XXI, 2018, 10634