Classifying Convex Compact Ancient Solutions to the Affine Curve Shortening Flow

被引:9
|
作者
Chen, Shibing [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Affine curve shortening flow; Ancient solutions; MEAN-CURVATURE; HEAT-EQUATION; HYPERSURFACES;
D O I
10.1007/s12220-013-9456-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we classify convex compact ancient solutions to the affine curve shortening flow, namely, any convex compact ancient solution to the affine curve shortening flow must be a shrinking ellipse. The method combines a rescaling argument inspired by Wang (Ann. Math., 173(1):1185-1239, 2011), affine invariance of the equation, and monotonicity of the affine isoperimetric ratio. It also provides a new simple proof for the corresponding classification result to the higher-dimensional affine normal flow.
引用
收藏
页码:1075 / 1079
页数:5
相关论文
共 40 条
  • [21] A new proof of a Harnack inequality for the curve shortening flow
    Bailesteanu, Mihai
    TURKISH JOURNAL OF MATHEMATICS, 2018, 42 (05) : 2621 - 2630
  • [22] Centro-affine normal flows on curves: Harnack estimates and ancient solutions
    Ivaki, Mohammad N.
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2015, 32 (06): : 1189 - 1197
  • [23] An eternal curve flow in centro-affine geometry
    Jiang, Xinjie
    Yang, Yun
    Yu, Yanhua
    JOURNAL OF FUNCTIONAL ANALYSIS, 2023, 284 (10)
  • [24] A hyperbolic-type affine invariant curve flow
    Wo, Weifeng
    Ma, Feiyao
    Qu, Changzheng
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2014, 22 (02) : 219 - 245
  • [25] Type I Singularities in the Curve Shortening Flow Associated to a Density
    Miquel, Vicente
    Vinado-Lereu, Francisco
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (03) : 2361 - 2394
  • [26] Convex solutions to the mean curvature flow
    Wang, Xu-Jia
    ANNALS OF MATHEMATICS, 2011, 173 (03) : 1185 - 1239
  • [27] Collapsing and noncollapsing in convex ancient mean curvature flow
    Bourni, Theodora
    Langford, Mat
    Lynch, Stephen
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (801): : 273 - 305
  • [28] AN UNCONDITIONALLY STABLE FINITE ELEMENT SCHEME FOR ANISOTROPIC CURVE SHORTENING FLOW
    Deckelnick, Klaus
    Nuernberg, Robert
    ARCHIVUM MATHEMATICUM, 2023, 59 (03): : 263 - 274
  • [29] Ancient solutions of the Ricci flow on bundles
    Lu, Peng
    Wang, Y. K.
    ADVANCES IN MATHEMATICS, 2017, 318 : 411 - 456
  • [30] LONG-TERM BEHAVIOR OF CURVE SHORTENING FLOW IN R3
    Minarcik, Jiri
    Benes, Michal
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (02) : 1221 - 1231