Classifying Convex Compact Ancient Solutions to the Affine Curve Shortening Flow

被引:9
|
作者
Chen, Shibing [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Affine curve shortening flow; Ancient solutions; MEAN-CURVATURE; HEAT-EQUATION; HYPERSURFACES;
D O I
10.1007/s12220-013-9456-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we classify convex compact ancient solutions to the affine curve shortening flow, namely, any convex compact ancient solution to the affine curve shortening flow must be a shrinking ellipse. The method combines a rescaling argument inspired by Wang (Ann. Math., 173(1):1185-1239, 2011), affine invariance of the equation, and monotonicity of the affine isoperimetric ratio. It also provides a new simple proof for the corresponding classification result to the higher-dimensional affine normal flow.
引用
收藏
页码:1075 / 1079
页数:5
相关论文
共 40 条
  • [11] CLASSIFICATION OF CONVEX ANCIENT FREE-BOUNDARY CURVE-SHORTENING FLOWS IN THE DISC
    Bourni, Theodora
    Langford, Mat
    ANALYSIS & PDE, 2023, 16 (09): : 2225 - 2240
  • [12] AN APPLICATION OF THE AFFINE SHORTENING FLOW
    Fang, Jianbo
    Yang, Yunlong
    Chen, Fangwei
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2021, 24 (04): : 927 - 931
  • [13] Type I ancient compact solutions of the Yamabe flow
    Daskalopoulos, Panagiota
    del Pino, Manuel
    King, John
    Sesum, Natasa
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2016, 137 : 338 - 356
  • [14] Curve shortening flow in heterogeneous media
    Cesaroni, Annalisa
    Novaga, Matteo
    Valdinoci, Enrico
    INTERFACES AND FREE BOUNDARIES, 2011, 13 (04) : 485 - 505
  • [15] An application of the curve shortening flow on surfaces
    Yang, Yunlong
    Fang, Jianbo
    ARCHIV DER MATHEMATIK, 2020, 114 (05) : 595 - 600
  • [16] Non-homothetic convex ancient solutions for flows by high powers of curvature
    Risa, Susanna
    Sinestrari, Carlo
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (02) : 601 - 618
  • [17] The curve shortening flow with density of a spherical curve in codimension two
    Vinado-Lereu, Francisco
    JOURNAL OF EVOLUTION EQUATIONS, 2021, 21 (02) : 1119 - 1148
  • [18] Uniqueness of two-convex closed ancient solutions to the mean curvature flow
    Angenent, Sigurd
    Daskalopoulos, Panagiota
    Sesum, Natasa
    ANNALS OF MATHEMATICS, 2020, 192 (02) : 353 - 436
  • [19] ERGODICITY OF STOCHASTIC CURVE SHORTENING FLOW IN THE PLANE
    Es-Sarhir, Abdelhadi
    von Renesse, Max-K.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (01) : 224 - 244
  • [20] CURVE SHORTENING FLOWS ON ROTATIONAL SURFACES GENERATED BY MONOTONE CONVEX FUNCTIONS
    Fujihara, Naotoshi
    KYUSHU JOURNAL OF MATHEMATICS, 2023, 77 (01) : 179 - 190