Classifying Convex Compact Ancient Solutions to the Affine Curve Shortening Flow

被引:9
|
作者
Chen, Shibing [1 ]
机构
[1] Univ Toronto, Dept Math, Toronto, ON M5S 2E4, Canada
关键词
Affine curve shortening flow; Ancient solutions; MEAN-CURVATURE; HEAT-EQUATION; HYPERSURFACES;
D O I
10.1007/s12220-013-9456-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we classify convex compact ancient solutions to the affine curve shortening flow, namely, any convex compact ancient solution to the affine curve shortening flow must be a shrinking ellipse. The method combines a rescaling argument inspired by Wang (Ann. Math., 173(1):1185-1239, 2011), affine invariance of the equation, and monotonicity of the affine isoperimetric ratio. It also provides a new simple proof for the corresponding classification result to the higher-dimensional affine normal flow.
引用
收藏
页码:1075 / 1079
页数:5
相关论文
共 40 条