Stochastic flows for SDEs with non-Lipschitz coefficients

被引:31
作者
Ren, JG [1 ]
Zhang, XX
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Hubei, Peoples R China
[2] Zhongshan Univ, Sch Math & Computat Sci, Guangzhou 510275, Guangdong, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2003年 / 127卷 / 08期
关键词
SDE; non-Lipschitz; Holder continuity; bicontinuity; homeomorphism; stochastic flow;
D O I
10.1016/S0007-4497(03)00062-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the bicontinuity and homeomorphic property of solutions of stochastic differential equations driven by infinite many Brownian motions and with non-Lipschitz coefficients. (C) 2003 Editions scientifiques et medicales Elsevier SAS. All rights reserved.
引用
收藏
页码:739 / 754
页数:16
相关论文
共 10 条
[1]   Modulus of continuity of the canonic Brownian motion "on the group of diffeomorphisms of the circle" [J].
Airault, H ;
Ren, JG .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 196 (02) :395-426
[2]  
[Anonymous], 1956, ACTA MATH ACAD SCI H
[3]  
[Anonymous], 1991, CONTINUOUS MARTINGAL, DOI DOI 10.1007/978-3-662-21726-9
[4]  
Bismut J. M., 1981, LECT NOTES MATH, V866
[5]  
CAO G, IN PRESS J FUNCT ANA
[6]  
HE K, MARKOVIAN PROPERTY S
[7]  
Huang Z., 2001, FDN STOCHASTIC ANAL
[8]  
Kunita H., 1984, Lecture Notes in Math., V1097, P143, DOI DOI 10.1007/BFB0099433
[9]   The canonic diffusion above the diffeomorphism group of the circle [J].
Malliavin, P .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 329 (04) :325-329
[10]   ON THE STRONG COMPARISON-THEOREMS FOR SOLUTIONS OF STOCHASTIC DIFFERENTIAL-EQUATIONS [J].
YAMADA, T ;
OGURA, Y .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 56 (01) :3-19