Optical Trapping with Pillar Bowtie Nanoantennas

被引:1
|
作者
Chen, Hao [1 ]
Ding, Qing [2 ]
Roxworthy, Brian J. [2 ]
Bhuiya, Abdul M. [2 ]
Toussaint, Kimani C., Jr. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
Plasmonics; optical tweezers; particle sorting; plasmonic film; plasmonic optical trapping; ARRAYS; MODE;
D O I
10.1117/12.2066316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Plasmonic nanoantennas make effective optical tweezers, owing to their characteristic field enhancement and confinement properties which produce large near-field intensity gradients. The trapping dynamics of plasmonic nanotweezers are strongly affected by their resonant optical absorption, which can produce significant heating and induce rapid convective flows in the surrounding fluid medium. We here consider a new class of plasmonic nanotweezers based on an array of elevated bowtie nanoantennas (BNA), whereby BNAs are suspended on optically transparent, 500-nm tall silica pillars. We discuss how the plasmonic properties of these pillar-BNAs (pBNAs) can be manipulated in large areas of 80 x 80-micron using low-input power densities. This modification in local plasmonic properties is expected to result in a much more complex optical trapping landscape. We also find that the temperature increase in the pBNAs is more than 10x higher than in comparable substrate-bound structures (for the same input intensity), in which the substrate acts as a heat sink that mitigates temperature increase, and we investigate the role of this enhanced thermo plasmonic heating on plasmonic trapping dynamics.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Responsivity and resonant properties of dipole, bowtie, and spiral Seebeck nanoantennas
    Mora-Ventura, Brhayllan
    Diaz de Leon, Ramon
    Garcia-Torales, Guillermo
    Flores, Jorge L.
    Alda, Javier
    Gonzalez, Francisco J.
    JOURNAL OF PHOTONICS FOR ENERGY, 2016, 6 (02):
  • [42] UV fluorescence enhancement by aluminum and magnesium equilateral bowtie nanoantennas
    Cheng, Xueling
    Lotubai, Emmanuel
    Rodriguez, Miguel
    Wang, Yunshan
    OSA CONTINUUM, 2020, 3 (12) : 3300 - 3313
  • [43] Plasmonic optical trapping of nanoparticles using T-shaped copper nanoantennas
    Li, Rengang
    Zhao, Yaqian
    Li, Ruyang
    Liu, Haiwei
    Ge, Yuan
    Xu, Zhe
    OPTICS EXPRESS, 2021, 29 (07): : 9826 - 9835
  • [44] Extraordinary Nonlinear Absorption in 3D Bowtie Nanoantennas
    Suh, Jae Yong
    Huntington, Mark D.
    Kim, Chul Hoon
    Zhou, Wei
    Wasielewski, Michael R.
    Odom, Teri W.
    NANO LETTERS, 2012, 12 (01) : 269 - 274
  • [45] Near Field Analysis of Modified Bowtie Nanoantennas with Polynomial Sides
    da Costa, Karlo Q.
    Dmitriev, Victor A.
    2009 SBMO/IEEE MTT-S INTERNATIONAL MICROWAVE AND OPTOELECTRONICS CONFERENCE (IMOC 2009), 2009, : 203 - 205
  • [46] Enhanced Light Trapping with Optical Nanoantennas for Thin-Film Solar Cells
    Simovski, Constantin R.
    Morits, Dmitry K.
    Voroshilov, Pavel M.
    Guzhva, Michael E.
    Belov, Pavel A.
    Kivshar, Yuri S.
    2013 7TH INTERNATIONAL CONGRESS ON ADVANCED ELECTROMAGNETIC MATERIALS IN MICROWAVES AND OPTICS (METAMATERIALS 2013), 2013, : 49 - 51
  • [47] Optical Nanoantennas
    Engheta, Nader
    2014 IEEE PHOTONICS CONFERENCE (IPC), 2014, : 154 - 155
  • [48] FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures
    Cetin, Arif E.
    INTERNATIONAL NANO LETTERS, 2015, 5 (01) : 21 - 27
  • [49] Optical nanoantennas
    Krasnok, A. E.
    Maksymov, I. S.
    Denisyuk, A. I.
    Belov, P. A.
    Miroshnichenko, A. E.
    Simovski, C. R.
    Kivshar, Yu S.
    PHYSICS-USPEKHI, 2013, 56 (06) : 539 - 564
  • [50] FDTD analysis of optical forces on bowtie antennas for high-precision trapping of nanostructures
    Arif E. Cetin
    International Nano Letters, 2015, 5 (1) : 21 - 27