Optical Trapping with Pillar Bowtie Nanoantennas

被引:1
|
作者
Chen, Hao [1 ]
Ding, Qing [2 ]
Roxworthy, Brian J. [2 ]
Bhuiya, Abdul M. [2 ]
Toussaint, Kimani C., Jr. [1 ]
机构
[1] Univ Illinois, Dept Mech Sci & Engn, Urbana, IL 61801 USA
[2] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
关键词
Plasmonics; optical tweezers; particle sorting; plasmonic film; plasmonic optical trapping; ARRAYS; MODE;
D O I
10.1117/12.2066316
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Plasmonic nanoantennas make effective optical tweezers, owing to their characteristic field enhancement and confinement properties which produce large near-field intensity gradients. The trapping dynamics of plasmonic nanotweezers are strongly affected by their resonant optical absorption, which can produce significant heating and induce rapid convective flows in the surrounding fluid medium. We here consider a new class of plasmonic nanotweezers based on an array of elevated bowtie nanoantennas (BNA), whereby BNAs are suspended on optically transparent, 500-nm tall silica pillars. We discuss how the plasmonic properties of these pillar-BNAs (pBNAs) can be manipulated in large areas of 80 x 80-micron using low-input power densities. This modification in local plasmonic properties is expected to result in a much more complex optical trapping landscape. We also find that the temperature increase in the pBNAs is more than 10x higher than in comparable substrate-bound structures (for the same input intensity), in which the substrate acts as a heat sink that mitigates temperature increase, and we investigate the role of this enhanced thermo plasmonic heating on plasmonic trapping dynamics.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] UV fluorescence modification by aluminum bowtie nanoantennas
    Lotubai, Emmanuel
    Wang, Yunshan
    Blair, Steve
    PLASMONICS: DESIGN, MATERIALS, FABRICATION, CHARACTERIZATION, AND APPLICATIONS XV, 2017, 10346
  • [32] Application of Plasmonic Bowtie Nanoantenna Arrays for Optical Trapping, Stacking, and Sorting
    Roxworthy, Brian J.
    Ko, Kaspar D.
    Kumar, Anil
    Fung, Kin Hung
    Chow, Edmond K. C.
    Liu, Gang Logan
    Fang, Nicholas X.
    Toussaint, Kimani C., Jr.
    NANO LETTERS, 2012, 12 (02) : 796 - 801
  • [33] Efficient Optical Trapping and Detection of Nanoparticle Via Plasmonic Bowtie Notch
    Lin, Yi-Chang
    Lee, Po-Tsung
    IEEE PHOTONICS JOURNAL, 2019, 11 (02):
  • [34] Conditions for stronger field enhancement of semiconductor bowtie nanoantennas
    Uemoto, Mitsuharu
    Ajiki, Hiroshi
    OPTICS LETTERS, 2015, 40 (08) : 1695 - 1698
  • [35] Arrays of Bowtie Plasmonic Nanoantennas for Field Enhancement in MOEMS
    Obradov, M.
    Jaksic, Z.
    Mladenovic, I.
    Tanaskovic, D.
    Jaksic, O.
    2019 IEEE 31ST INTERNATIONAL CONFERENCE ON MICROELECTRONICS (MIEL 2019), 2019, : 87 - 90
  • [36] Bowtie nanoantennas with polynomial sides in the excitation and emission regimes
    Costa K.Q.
    Dmitriev V.A.
    Progress In Electromagnetics Research B, 2011, (32): : 57 - 73
  • [37] A comparison of simulated and fabricated gold bowtie nanoantennas for molecular fingerprinting
    Campbell, Caroline
    Casey, Abigail
    Hren, Matthew
    Drobitch, Justine
    Triplett, Gregory
    NANOSCALE IMAGING, SENSING, AND ACTUATION FOR BIOMEDICAL APPLICATIONS XVI, 2019, 10891
  • [38] Conformal transformation in bowtie nanoantennas and nanocavities: unveiling hidden symmetries
    Pacheco-Pena, V
    Alves, Ruben
    Navarro-Cia, M.
    2019 THIRTEENTH INTERNATIONAL CONGRESS ON ARTIFICIAL MATERIALS FOR NOVEL WAVE PHENOMENA (METAMATERIALS)), 2019, : 284 - 286
  • [39] Near-field analysis of discrete bowtie plasmonic nanoantennas
    Moreno, Camilo
    Mendez-Lozoya, Javier
    Gonzalez, Gabriel
    Gonzalez, Francisco J.
    Boreman, Glenn
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2020, 62 (02) : 943 - 948
  • [40] Monolithically integrated single quantum dots coupled to bowtie nanoantennas
    Lyamkina, A. A.
    Schraml, K.
    Regler, A.
    Schalk, M.
    Bakarov, A. K.
    Toropov, A. I.
    Moshchenko, S. P.
    Kaniber, Michael
    OPTICS EXPRESS, 2016, 24 (25): : 28937 - 28945