Packing measure of super separated iterated function systems

被引:1
|
作者
Reid, James E. [1 ,2 ]
机构
[1] Univ North Texas, Dept Math, Denton, TX 76203 USA
[2] Centenary Coll Louisiana, Dept Math, Shreveport, LA 71104 USA
关键词
Packing measure; Fractals; Iterated function systems; Cantor sets; Sierpiski triangles; 28A78; 28A80; 37C45; SELF-SIMILAR SETS; HAUSDORFF;
D O I
10.1007/s10711-018-0324-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J be the limit set of an iterated function system insatisfying the open set condition. It is well known that the h-dimensional packing measure of J is positive and finite when h is given by Hutchinson's formula. However, it may be hard to find a formula for the h-dimensional packing measure of J. We introduce the super separation condition and use it to reduce the problem of computing the packing measure to checking densities of a finite number of balls around each point in the limit set. We then use this fact to find formulas for the packing measure of a class of Cantor sets in class of fractals based on regular convex polygons in R-2, and a class of fractals based on regular simplexes in Rd for d >= 3.
引用
收藏
页码:173 / 192
页数:20
相关论文
共 50 条
  • [31] Overlapping Iterated Function Systems on a Segment
    Barnsley, M.
    Igudesman, K. B.
    RUSSIAN MATHEMATICS, 2012, 56 (12) : 1 - 12
  • [32] Accumulation points of iterated function systems
    Keen, L
    Lakic, N
    COMPLEX DYNAMICS, 2006, 396 : 101 - +
  • [33] On -Weakly Hyperbolic Iterated Function Systems
    Melo, Italo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (04): : 717 - 732
  • [34] D/A Converters and Iterated Function Systems
    Toshimichi Saito
    Junya Shimakawa
    Hiroyuki Torikai
    Nonlinear Dynamics, 2006, 44 : 37 - 43
  • [35] Chaotic fuzzy iterated function systems
    Selvy R.
    Kumar P.B.V.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04): : 9261 - 9270
  • [36] Real Projective Iterated Function Systems
    Barnsley, Michael F.
    Vince, Andrew
    JOURNAL OF GEOMETRIC ANALYSIS, 2012, 22 (04) : 1137 - 1172
  • [37] Subdivision schemes for iterated function systems
    Micchelli, CA
    Sauer, T
    Xu, YS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (06) : 1861 - 1872
  • [38] The rate of convergence for iterated function systems
    Sleczka, Maciej
    STUDIA MATHEMATICA, 2011, 205 (03) : 201 - 214
  • [39] A TOPOLOGICAL VERSION OF ITERATED FUNCTION SYSTEMS
    Mihail, Alexandru
    ANALELE STIINTIFICE ALE UNIVERSITATII AL I CUZA DIN IASI-SERIE NOUA-MATEMATICA, 2012, 58 (01): : 105 - 120
  • [40] TEICHMULLER SPACE FOR ITERATED FUNCTION SYSTEMS
    Hille, Martial R.
    Snigireva, Nina
    CONFORMAL GEOMETRY AND DYNAMICS, 2012, 16 : 132 - 160