Dual solutions of a micropolar nanofluid flow with radiative heat mass transfer over stretching/shrinking sheet using spectral quasilinearization method

被引:11
|
作者
Magodora, Mangwiro [1 ]
Mondal, Hiranmoy [1 ]
Sibanda, Precious [1 ]
机构
[1] Univ KwaZulu Natal, Pietermaritzburg Campus, Pietermaritzburg, South Africa
关键词
Thermophoresis; Micropolar fluid; Boundary layer flow; Brownian motion; Quasilinearization; BOUNDARY-LAYER-FLOWS; THERMAL-RADIATION; CHEMICAL-REACTION; FLUID; MHD; SURFACE; BRANCH; SIMULATION; BEHAVIOR; PLATE;
D O I
10.1108/MMMS-01-2019-0028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Purpose The purpose of this paper is to focus on the application of Chebyshev spectral collocation methodology with Gauss Lobatto grid points to micropolar fluid over a stretching or shrinking surface. Radiation, thermophoresis and nanoparticle Brownian motion are considered. The results have attainable scientific and technological applications in systems involving stretchable materials. Design/methodology/approach The model equations governing the flow are transformed into non-linear ordinary differential equations which are then reworked into linear form using the Newton-based quasilinearization method (SQLM). Spectral collocation is then used to solve the resulting linearised system of equations. Findings The validity of the model is established using error analysis. The velocity, temperature, micro-rotation, skin friction and couple stress parameters are conferred diagrammatically and analysed in detail. Originality/value The study obtains numerical explanations for rapidly convergent solutions using the spectral quasilinearization method. Convergence of the numerical solutions was monitored using the residual error analysis. The influence of radiation, heat and mass parameters on the flow are depicted graphically and analysed. The study is an extension on the work by Zheng et al. (2012) and therefore the novelty is that the authors tend to take into account nanoparticles, Brownian motion and thermophoresis in the flow of a micropolar fluid.
引用
收藏
页码:238 / 255
页数:18
相关论文
共 50 条
  • [11] Viscoelastic Nanofluid Flow and Radiative Nonlinear Heat Transfer Over a Stretching Sheet
    Ansari, Md. S.
    Nandkeolyar, R.
    Motsa, S. S.
    Sibanda, P.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2015, 12 (09) : 2385 - 2394
  • [12] Unsteady Flow and Heat Transfer of a Casson Micropolar Nanofluid over a Curved Stretching/Shrinking Surface
    Sadiq, Muhammad A.
    Abbas, Nadeem
    Bahaidarah, Haitham M. S.
    Amjad, Mohammad
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2023, 19 (02): : 471 - 486
  • [13] Dual solutions of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption
    Naramgari, Sandeep
    Sulochana, C.
    APPLIED NANOSCIENCE, 2016, 6 (01) : 131 - 139
  • [14] Dual solutions of radiative MHD nanofluid flow over an exponentially stretching sheet with heat generation/absorption
    Sandeep Naramgari
    C. Sulochana
    Applied Nanoscience, 2016, 6 : 131 - 139
  • [15] Hybrid nanofluid flow and heat transfer over a permeable biaxial stretching/shrinking sheet
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (07) : 3497 - 3513
  • [16] Heat and mass transfer characteristics of radiative hybrid nanofluid flow over a stretching sheet with chemical reaction
    Santhi, Muttukuru
    Suryanarayana Rao, Kavaturi Venkata
    Sudarsana Reddy, Patakota
    Sreedevi, Paluru
    HEAT TRANSFER, 2021, 50 (03) : 2929 - 2949
  • [17] Dual solutions of magnetohydrodynamic stagnation point flow and heat transfer of viscoelastic nanofluid over a permeable stretching/shrinking sheet with thermal radiation
    Jusoh, R.
    Nazar, R.
    Pop, I.
    1ST INTERNATIONAL CONFERENCE ON APPLIED & INDUSTRIAL MATHEMATICS AND STATISTICS 2017 (ICOAIMS 2017), 2017, 890
  • [18] MHD Heat and Mass Transfer of Micropolar Fluid Flow Over a Stretching Sheet
    Bhargava, R.
    Sharma, S.
    Bhargava, P.
    Takhar, H. S.
    INTERNATIONAL JOURNAL OF FLUID MECHANICS RESEARCH, 2007, 34 (01) : 79 - 97
  • [19] Hybrid Nanofluid Heat and Mass Transfer Characteristics Over a Stretching/Shrinking Sheet with Slip Effects
    Reddy, P. Sudarsana
    Sreedevi, P.
    Chamkha, Ali J.
    JOURNAL OF NANOFLUIDS, 2023, 12 (01) : 251 - 260
  • [20] Dual solutions for stagnation-point flow and convective heat transfer of a Williamson nanofluid past a stretching/shrinking sheet
    Rama Subba Reddy Gorla
    B. J. Gireesha
    Heat and Mass Transfer, 2016, 52 : 1153 - 1162