Using multiple objective calibrations to explore uncertainty extreme event modeling

被引:0
作者
Roche, A. David [1 ]
Lence, Barbara J. [2 ]
Vaags, Eric [2 ]
机构
[1] Kerr Wood Leidal Associates Ltd, 201-3045 Douglas, Victoria, BC V8T 4N2, Canada
[2] Univ British Columbia, Dept Civil Engn, 6250 Appl Sci, Lane, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
PMF; extreme events; uncertainty; watershed models; calibration; RAINFALL-RUNOFF MODELS; PROBABLE MAXIMUM PRECIPITATION; AUTOMATIC CALIBRATION; PARAMETER-ESTIMATION; GLOBAL OPTIMIZATION; HYDROLOGICAL MODEL; CLIMATE-CHANGE; SENSITIVITY-ANALYSIS; FLOOD; QUANTIFICATION;
D O I
10.1139/cjce-2020-0275
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Deterministic watershed models are often used to estimate the probable maximum flood (PMF). An approach for investigating the uncertainty in extreme flood modeling is proposed. Using different calibration objectives, several automatic calibrations of the University of British Columbia watershed model (UBCWM) are conducted and the resulting collection of optimal combinations of parameter values are used to simulate the extreme event. An application to the Coquitlam River Watershed above Coquitlam Dam in southwestern British Columbia shows that the variability among the PMF estimates is relatively small in comparison with the potential uncertainties in estimating extreme events, with coefficient of variation values for peak flow, event volume, and time to peak of 4%, 1%, and 1%, respectively. The PMF-based simulations are relatively insensitive to the different measures of calibration performances.
引用
收藏
页码:1386 / 1397
页数:12
相关论文
共 82 条
[1]  
[Anonymous], 2019, RAVEN USERS DEV MANU
[2]  
[Anonymous], 2017, Risk Assessment for Flood Risk Management Studies ER 1105-2-101
[3]  
[Anonymous], 2009, Manual on Estimation of Probable Maximum Precipitation
[4]   Influence of rainfall spatial variability on flood prediction [J].
Arnaud, P ;
Bouvier, C ;
Cisneros, L ;
Dominguez, R .
JOURNAL OF HYDROLOGY, 2002, 260 (1-4) :216-230
[5]   Sensitivity of hydrological models to uncertainty in rainfall input [J].
Arnaud, Patrick ;
Lavabre, Jacques ;
Fouchier, Catherine ;
Diss, Stephanie ;
Javelle, Pierre .
HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2011, 56 (03) :397-410
[6]   Observational data and scale-dependent parameterizations: explorations using a virtual hydrological reality [J].
Bashford, KE ;
Beven, KJ ;
Young, PC .
HYDROLOGICAL PROCESSES, 2002, 16 (02) :293-312
[7]   The role of hydrological modelling uncertainties in climate change impact assessments of Irish river catchments [J].
Bastola, Satish ;
Murphy, Conor ;
Sweeney, John .
ADVANCES IN WATER RESOURCES, 2011, 34 (05) :562-576
[8]   Probable Maximum Precipitation: Its Estimation and Uncertainty Quantification Using Bivariate Extreme Value Analysis [J].
Ben Alaya, M. A. ;
Zwiers, F. ;
Zhang, X. .
JOURNAL OF HYDROMETEOROLOGY, 2018, 19 (04) :679-694
[9]   Multi-variable parameter estimation to increase confidence in hydrological modelling [J].
Bergström, S ;
Lindström, G ;
Pettersson, A .
HYDROLOGICAL PROCESSES, 2002, 16 (02) :413-421
[10]   Towards a coherent philosophy for modelling the environment [J].
Beven, K .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2002, 458 (2026) :2465-2484