Deep learning-based object recognition in multispectral satellite imagery for real-time applications

被引:15
|
作者
Gudzius, Povilas [1 ]
Kurasova, Olga [1 ]
Darulis, Vytenis [1 ]
Filatovas, Ernestas [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad St 4, LT-08412 Vilnius, Lithuania
关键词
VEHICLE DETECTION; TARGET DETECTION; TRENDS;
D O I
10.1007/s00138-021-01209-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Satellite imagery is changing the way we understand and predict economic activity in the world. Advancements in satellite hardware and low-cost rocket launches have enabled near-real-time, high-resolution images covering the entire Earth. It is too labour-intensive, time-consuming and expensive for human annotators to analyse petabytes of satellite imagery manually. Current computer vision research exploring this problem still lack accuracy and prediction speed, both significantly important metrics for latency-sensitive automatized industrial applications. Here we address both of these challenges by proposing a set of improvements to the object recognition model design, training and complexity regularisation, applicable to a range of neural networks. Furthermore, we propose a fully convolutional neural network (FCN) architecture optimised for accurate and accelerated object recognition in multispectral satellite imagery. We show that our FCN exceeds human-level performance with state-of-the-art 97.67% accuracy over multiple sensors, it is able to generalize across dispersed scenery and outperforms other proposed methods to date. Its computationally light architecture delivers a fivefold improvement in training time and a rapid prediction, essential to real-time applications. To illustrate practical model effectiveness, we analyse it in algorithmic trading environment. Additionally, we publish a proprietary annotated satellite imagery dataset for further development in this research field. Our findings can be readily implemented for other real-time applications too.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Real-time masked face recognition using deep learning-based double generator network
    Sumathy, G.
    Usha, M.
    Rajakumar, S.
    Jayapriya, P.
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 325 - 334
  • [22] A Real-time Hand Gesture Recognition System on Raspberry Pi: A Deep Learning-based Approach
    Yu, Alyssa
    Qian, Cheng
    Guo, Yifan
    2024 IEEE 21ST CONSUMER COMMUNICATIONS & NETWORKING CONFERENCE, CCNC, 2024, : 499 - 506
  • [23] THREE APPLICATIONS OF DEEP LEARNING ALGORITHMS FOR OBJECT DETECTION IN SATELLITE IMAGERY
    Napiorkowska, Milena
    Petit, David
    Marti, Paula
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 4839 - 4842
  • [24] Realizing real-time deep learning-based super-resolution applications on Integrated GPUs
    Kim, SungYe
    Bindu, Preeti
    2016 15TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA 2016), 2016, : 693 - 696
  • [25] Deep Learning-Based Improved Object Recognition in Warehouses
    Fouzia, Syeda
    Bell, Mark
    Klette, Reinhard
    IMAGE AND VIDEO TECHNOLOGY (PSIVT 2017), 2018, 10749 : 350 - 365
  • [26] Introduction to Computer Vision and Real Time Deep Learning-based Object Detection
    Shanahan, James G.
    Dai, Liang
    KDD '20: PROCEEDINGS OF THE 26TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2020, : 3523 - 3524
  • [27] Meta-neural-network for real-time and passive deep-learning-based object recognition
    Jingkai Weng
    Yujiang Ding
    Chengbo Hu
    Xue-Feng Zhu
    Bin Liang
    Jing Yang
    Jianchun Cheng
    Nature Communications, 11
  • [28] Introduction to Computer Vision and Real Time Deep Learning-based Object Detection
    Shanahan, James G.
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 3515 - 3516
  • [29] Meta-neural-network for real-time and passive deep-learning-based object recognition
    Weng, Jingkai
    Ding, Yujiang
    Hu, Chengbo
    Zhu, Xue-Feng
    Liang, Bin
    Yang, Jing
    Cheng, Jianchun
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [30] Deep Learning Based, Real-Time Object Detection for Autonomous Driving
    Akyol, Gamze
    Kantarci, Alperen
    Celik, Ali Eren
    Ak, Abdullah Cihan
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,