Deep learning-based object recognition in multispectral satellite imagery for real-time applications

被引:15
|
作者
Gudzius, Povilas [1 ]
Kurasova, Olga [1 ]
Darulis, Vytenis [1 ]
Filatovas, Ernestas [1 ]
机构
[1] Vilnius Univ, Inst Data Sci & Digital Technol, Akad St 4, LT-08412 Vilnius, Lithuania
关键词
VEHICLE DETECTION; TARGET DETECTION; TRENDS;
D O I
10.1007/s00138-021-01209-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Satellite imagery is changing the way we understand and predict economic activity in the world. Advancements in satellite hardware and low-cost rocket launches have enabled near-real-time, high-resolution images covering the entire Earth. It is too labour-intensive, time-consuming and expensive for human annotators to analyse petabytes of satellite imagery manually. Current computer vision research exploring this problem still lack accuracy and prediction speed, both significantly important metrics for latency-sensitive automatized industrial applications. Here we address both of these challenges by proposing a set of improvements to the object recognition model design, training and complexity regularisation, applicable to a range of neural networks. Furthermore, we propose a fully convolutional neural network (FCN) architecture optimised for accurate and accelerated object recognition in multispectral satellite imagery. We show that our FCN exceeds human-level performance with state-of-the-art 97.67% accuracy over multiple sensors, it is able to generalize across dispersed scenery and outperforms other proposed methods to date. Its computationally light architecture delivers a fivefold improvement in training time and a rapid prediction, essential to real-time applications. To illustrate practical model effectiveness, we analyse it in algorithmic trading environment. Additionally, we publish a proprietary annotated satellite imagery dataset for further development in this research field. Our findings can be readily implemented for other real-time applications too.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Deep learning-based object recognition in multispectral satellite imagery for real-time applications
    Povilas Gudžius
    Olga Kurasova
    Vytenis Darulis
    Ernestas Filatovas
    Machine Vision and Applications, 2021, 32
  • [2] Real-Time Deep Learning-Based Object Recognition in Augmented Reality
    Egipko, V
    Zhdanova, M.
    Gapon, N.
    Voronin, V.
    Semenishchev, E.
    REAL-TIME PROCESSING OF IMAGE, DEPTH, AND VIDEO INFORMATION 2024, 2024, 13000
  • [3] Real-Time Deep Learning-Based Object Detection Framework
    Tarimo, William
    Sabra, Moustafa M.
    Hendre, Shonan
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 1829 - 1836
  • [4] Deep Learning-Based Real-time Object Detection in Inland Navigation
    Hammedi, Wided
    Ramirez-Martinez, Metzli
    Brunet, Philippe
    Senouci, Sidi Mohammed
    Messous, Mohamed Ayoub
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [5] Deep Learning-Based Emotion Recognition from Real-Time Videos
    Zhou, Wenbin
    Cheng, Justin
    Lei, Xingyu
    Benes, Bedrich
    Adamo, Nicoletta
    HUMAN-COMPUTER INTERACTION. MULTIMODAL AND NATURAL INTERACTION, HCI 2020, PT II, 2020, 12182 : 321 - 332
  • [6] A Deep Learning-Based Real-Time Video Object Contextualizing and Archiving System
    Pham, Dinh-Lam
    Yoon, Byeongnam
    Vu, Viet-Vu
    Kim, Joo-Chang
    Ahn, Sang-Eun
    Chang, Jeong-Hyun
    Yoo, Hyun
    Sun, Kyonghee
    Kim, Kyong-Sook
    Kim, Kwanghoon Pio
    2023 25TH INTERNATIONAL CONFERENCE ON ADVANCED COMMUNICATION TECHNOLOGY, ICACT, 2023, : 137 - 144
  • [7] Real-time deep learning-based image recognition for applications in automated positioning and injection of biological cells
    Sadak, Ferhat
    Saadat, Mozafar
    Hajiyavand, Amir M.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 125
  • [8] Aircraft detection in satellite imagery using deep learning-based object detectors
    Azam, Basim
    Khan, Muhammad Jaleed
    Bhatti, Farrukh Aziz
    Maud, Abdur Rahman M.
    Hussain, Syed Fawad
    Hashmi, Ali Javed
    Khurshid, Khurram
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 94
  • [9] Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation
    Ye, Junhua
    Li, Xin
    Zhang, Xiangdong
    Zhang, Qin
    Chen, Wu
    SENSORS, 2020, 20 (09)
  • [10] Virtual Keyboards With Real-Time and Robust Deep Learning-Based Gesture Recognition
    Lee, Tae-Ho
    Kim, Sunwoong
    Kim, Taehyun
    Kim, Jin-Sung
    Lee, Hyuk-Jae
    IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS, 2022, 52 (04) : 725 - 735