Strategies for genetic manipulation of adult stem cell-derived organoids

被引:7
作者
Menche, Constantin [1 ,2 ]
Farin, Henner F. [1 ,2 ,3 ,4 ]
机构
[1] Inst Tumor Biol & Expt Therapy, Georg Speyer Haus, Frankfurt, Germany
[2] Goethe Univ, Frankfurt Canc Inst, Frankfurt, Germany
[3] German Canc Consortium DKTK, Heidelberg, Germany
[4] German Canc Res Ctr, Heidelberg, Germany
关键词
IN-VITRO EXPANSION; HUMAN COLON; CAS9; DIFFERENTIATION; MUTATIONS; WNT; IDENTIFICATION; PROGENITORS; GENERATION; EXPRESSION;
D O I
10.1038/s12276-021-00609-8
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Organoid technology allows the expansion of primary epithelial cells from normal and diseased tissues, providing a unique model for human (patho)biology. In a three-dimensional environment, adult stem cells self-organize and differentiate to gain tissue-specific features. Accessibility to genetic manipulation enables the investigation of the molecular mechanisms underlying cell fate regulation, cell differentiation and cell interactions. In recent years, powerful methodologies using lentiviral transgenesis, CRISPR/Cas9 gene editing, and single-cell readouts have been developed to study gene function and carry out genetic screens in organoids. However, the multicellularity and dynamic nature of stem cell-derived organoids also present challenges for genetic experimentation. In this review, we focus on adult gastrointestinal organoids and summarize the state-of-the-art protocols for successful transgenesis. We provide an outlook on emerging genetic techniques that could further increase the applicability of organoids and enhance the potential of organoid-based techniques to deepen our understanding of gene function in tissue biology. Organ model: Making custom 3D models using genetic manipulation Advances in targeted genomic manipulation are expanding the utility of cultured organ models for studying disease in complex tissues. Mammalian cells can be coaxed to self-assemble and mature into organoids, structures that recapitulate key features and functions of various organs. Constantin Menche and Henner Farin from the Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt am Main, Germany, have reviewed how technologies like the CRISPR/Cas9 genome editing system can be used to "customize" such organoid cultures. They highlight challenges associated with achieving efficient genetic manipulation in gastrointestinal organoid systems. These include delivering the necessary reagents for genome editing into cells, and ensuring that only the desired changes are made to the DNA. Under optimal conditions, researchers can test the tissue-level effects of deleting or altering genes, or study the impact of mutations that have been observed in patients.
引用
收藏
页码:1483 / 1494
页数:12
相关论文
共 98 条
[1]   The CRISPR tool kit for genome editing and beyond [J].
Adli, Mazhar .
NATURE COMMUNICATIONS, 2018, 9
[2]   Whole-organism clone tracing using single-cell sequencing [J].
Alemany, Anna ;
Florescu, Maria ;
Baron, Chloe S. ;
Peterson-Maduro, Josi ;
van Oudenaarden, Alexander .
NATURE, 2018, 556 (7699) :108-+
[3]  
Andersson-Rolf A, 2017, NAT METHODS, V14, P287, DOI [10.1038/NMETH.4156, 10.1038/nmeth.4156]
[4]   Search-and-replace genome editing without double-strand breaks or donor DNA [J].
Anzalone, Andrew V. ;
Randolph, Peyton B. ;
Davis, Jessie R. ;
Sousa, Alexander A. ;
Koblan, Luke W. ;
Levy, Jonathan M. ;
Chen, Peter J. ;
Wilson, Christopher ;
Newby, Gregory A. ;
Raguram, Aditya ;
Liu, David R. .
NATURE, 2019, 576 (7785) :149-+
[5]   Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing [J].
Artegiani, Benedetta ;
Hendriks, Delilah ;
Beumer, Joep ;
Kok, Rutger ;
Zheng, Xuan ;
Joore, Indi ;
Chuva de Sousa Lopes, Susana ;
van Zon, Jeroen ;
Tans, Sander ;
Clevers, Hans .
NATURE CELL BIOLOGY, 2020, 22 (03) :321-+
[6]   Probing the Tumor Suppressor Function of BAP1 in CRISPR-Engineered Human Liver Organoids [J].
Artegiani, Benedetta ;
van Voorthuijsen, Lisa ;
Lindeboom, Rik G. H. ;
Seinstra, Danielle ;
Heo, Inha ;
Tapia, Pablo ;
Lopez-Iglesias, Carmen ;
Postrach, Daniel ;
Dayton, Talya ;
Oka, Rurika ;
Hu, Huili ;
van Boxtel, Ruben ;
van Es, Johan H. ;
Offerhaus, Johan ;
Peters, Peter J. ;
van Rheenen, Jacco ;
Vermeulen, Michiel ;
Clevers, Hans .
CELL STEM CELL, 2019, 24 (06) :927-+
[7]   Organoids in immunological research [J].
Bar-Ephraim, Yotam E. ;
Kretzschmar, Kai ;
Clevers, Hans .
NATURE REVIEWS IMMUNOLOGY, 2020, 20 (05) :279-293
[8]   Receptor-Targeted Nipah Virus Glycoproteins Improve Cell-Type Selective Gene Delivery and Reveal a Preference for Membrane-Proximal Cell Attachment [J].
Bender, Ruben R. ;
Muth, Anke ;
Schneider, Irene C. ;
Friedel, Thorsten ;
Hartmann, Jessica ;
Pluckthun, Andreas ;
Maisner, Andrea ;
Buchholz, Christian J. .
PLOS PATHOGENS, 2016, 12 (06)
[9]   Organoid Models of Human and Mouse Ductal Pancreatic Cancer [J].
Boj, Sylvia F. ;
Hwang, Chang-Il ;
Baker, Lindsey A. ;
Chio, Iok In Christine ;
Engle, Dannielle D. ;
Corbo, Vincenzo ;
Jager, Myrthe ;
Ponz-Sarvise, Mariano ;
Tiriac, Herve ;
Spector, Mona S. ;
Gracanin, Ana ;
Oni, Tobiloba ;
Yu, Kenneth H. ;
van Boxtel, Ruben ;
Huch, Meritxell ;
Rivera, Keith D. ;
Wilson, John P. ;
Feigin, Michael E. ;
Oehlund, Daniel ;
Handly-Santana, Abram ;
Ardito-Abraham, Christine M. ;
Ludwig, Michael ;
Elyada, Ela ;
Alagesan, Brinda ;
Biffi, Giulia ;
Yordanov, Georgi N. ;
Delcuze, Bethany ;
Creighton, Brianna ;
Wright, Kevin ;
Park, Youngkyu ;
Morsink, Folkert H. M. ;
Molenaar, I. Quintus ;
Rinkes, Inne H. Borel ;
Cuppen, Edwin ;
Hao, Yuan ;
Jin, Ying ;
Nijman, Isaac J. ;
Iacobuzio-Donahue, Christine ;
Leach, Steven D. ;
Pappin, Darryl J. ;
Hammell, Molly ;
Klimstra, David S. ;
Basturk, Olca ;
Hruban, Ralph H. ;
Offerhaus, George Johan ;
Vries, Robert G. J. ;
Clevers, Hans ;
Tuveson, David A. .
CELL, 2015, 160 (1-2) :324-338
[10]   Human tissues in a dish: The research and ethical implications of organoid technology [J].
Bredenoord, Annelien L. ;
Clevers, Hans ;
Knoblich, Juergen A. .
SCIENCE, 2017, 355 (6322)