Advances in photodynamic antimicrobial chemotherapy

被引:103
作者
Anas, Abdulaziz [1 ]
Sobhanan, Jeladhara [2 ]
Sulfiya, K. M. [1 ]
Jasmin, C. [1 ]
Sreelakshmi, P. K. [1 ]
Biju, Vasudevanpillai [2 ,3 ]
机构
[1] Natl Inst Oceanog, CSIR, Reg Ctr Kochi, Kochi 682018, Kerala, India
[2] Hokkaido Univ, Grad Sch Environm Sci, Sapporo, Hokkaido, Japan
[3] Hokkaido Univ, Res Inst Elect Sci, Sapporo, Hokkaido, Japan
关键词
PACT; Photodynamic therapy; Antimicrobial; Bacteria; Fungus; COVID-19; NONSURGICAL PERIODONTAL TREATMENT; GRAM-NEGATIVE BACTERIA; PERI-IMPLANT DISEASES; EMITTING DIODE LIGHT; STAPHYLOCOCCUS-AUREUS; IN-VITRO; ENTEROCOCCUS-FAECALIS; DRUG-DELIVERY; QUANTUM DOTS; MECHANICAL DEBRIDEMENT;
D O I
10.1016/j.jphotochemrev.2021.100452
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photodynamic therapy (PDT) and photodynamic antimicrobial chemotherapy (PACT) combine light and photosensitizers to treat cancers and microbial infections, respectively. In PACT, the excitation of a photosensitizer drug with appropriate light generates reactive oxygen species (ROS) that kill pathogens in the proximity of the drug. PACT has considerably advanced with new light sources, biocompatible photosensitizers, bioconjugate methods, and efficient ROS production. The PACT technology has evolved to compete with or replace antibiotics, reducing the burden of antibiotic resistance. This review updates recent advances in PACT, with special references to light sources, photosensitizers, and emerging applications to microbial infestations. We also discuss PACT applied to COVID-19 causing SARS-CoV-2 treatment and disinfecting food materials and water. Finally, we discuss the pathogen selectivity and efficiency of PACT.
引用
收藏
页数:17
相关论文
共 247 条
[1]   New photosensitizers for photodynamic therapy [J].
Abrahamse, Heidi ;
Hamblin, Michael R. .
BIOCHEMICAL JOURNAL, 2016, 473 :347-364
[2]   PHOTOCHEMICAL DISINFECTION OF EFFLUENTS - PILOT-PLANT STUDIES [J].
ACHER, A ;
FISCHER, E ;
ZELLINGHER, R ;
MANOR, Y .
WATER RESEARCH, 1990, 24 (07) :837-843
[3]   THE EFFECT OF PHOTOCHEMICAL TREATMENT OF WATER ON ALGAL GROWTH [J].
ACHER, AJ ;
ELGAVISH, A .
WATER RESEARCH, 1980, 14 (05) :539-543
[4]  
Ackroyd R, 2001, PHOTOCHEM PHOTOBIOL, V74, P656, DOI 10.1562/0031-8655(2001)074<0656:THOPAP>2.0.CO
[5]  
2
[6]   Antimicrobial Properties of Vitamin B2 [J].
Ahgilan, Aarthi ;
Sabaratnam, Vikineswary ;
Periasamy, Vengadesh .
INTERNATIONAL JOURNAL OF FOOD PROPERTIES, 2016, 19 (05) :1173-1181
[7]   Antimicrobial Photodynamic Therapy in the Control of COVID-19 [J].
Almeida, Adelaide ;
Faustino, M. Amparo F. ;
Neves, Maria G. P. M. S. .
ANTIBIOTICS-BASEL, 2020, 9 (06) :1-10
[8]   Phage Therapy and Photodynamic Therapy: Low Environmental Impact Approaches to Inactivate Microorganisms in Fish Farming Plants [J].
Almeida, Adelaide ;
Cunha, Angela ;
Gomes, Newton C. M. ;
Alves, Eliana ;
Costa, Liliana ;
Faustino, Maria A. F. .
MARINE DRUGS, 2009, 7 (03) :268-313
[9]   Photodynamic inactivation of multidrug-resistant bacteria in hospital wastewaters: influence of residual antibiotics [J].
Almeida, Joana ;
Tome, Joao P. C. ;
Neves, Maria G. P. M. S. ;
Tome, Augusto C. ;
Cavaleiro, Jose A. S. ;
Cunha, Angela ;
Costa, Liliana ;
Faustino, Maria A. F. ;
Almeida, Adelaide .
PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES, 2014, 13 (04) :626-633
[10]   Photodynamic Antimicrobial Chemotherapy in Aquaculture: Photoinactivation Studies of Vibrio fischeri [J].
Alves, Eliana ;
Faustino, Maria A. F. ;
Tome, Joao P. C. ;
Neves, Maria G. P. M. S. ;
Tome, Augusto C. ;
Cavaleiro, Jose A. S. ;
Cunha, Angela ;
Gomes, Newton C. M. ;
Almeida, Adelaide .
PLOS ONE, 2011, 6 (06)