On W1+∞ 3-algebra and integrable system

被引:17
作者
Chen, Min-Ru [1 ,2 ]
Wang, Shi-Kun [3 ]
Wang, Xiao-Li [1 ,4 ]
Wu, Ke [1 ,5 ]
Zhao, Wei-Zhong [1 ,5 ,6 ]
机构
[1] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[2] Henan Univ, Coll Math & Informat Sci, Kaifeng 475001, Peoples R China
[3] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100190, Peoples R China
[4] Qilu Univ Technol, Sch Sci, Jinan 250353, Peoples R China
[5] Beijing Ctr Math & Informat Interdisciplinary Sci, Beijing 100048, Peoples R China
[6] Capital Normal Univ, Inst Math & Interdisciplinary Sci, Beijing 100048, Peoples R China
关键词
KP HIERARCHY; HAMILTONIAN-STRUCTURE; SUPERCONFORMAL ALGEBRA; POLYNOMIAL FUNCTIONS; KDV EQUATION; MODELS; LIE;
D O I
10.1016/j.nuclphysb.2014.12.025
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We construct the W1+infinity 3-algebra and investigate its connection with the integrable systems. Since the W1+infinity 3-algebra with a fixed generator W-0(0) in the operator Nambu 3-bracket recovers the W1+infinity algebra, it is intrinsically related to the KP hierarchy. For the general case of the W1+infinity 3-algebra, we directly derive the KP and KdV equations from the Nambu Poisson evolution equation with the different Hamiltonian pairs of the KP hierarchy. Due to the Nambu Poisson evolution equation involves two Hamiltonians, the deep relationship between the Hamiltonian pairs of KP hierarchy is revealed. Furthermore we give a realization of the W1+infinity 3-algebrain terms of a complex bosonic field. Based on the Nambu 3-brackets of the complex bosonic field, we derive the (generalized) nonlinear Schrodinger equation and give an application in optical soliton. (C) 2015 The Authors. Published by Elsevier B.V.
引用
收藏
页码:655 / 675
页数:21
相关论文
共 56 条
[1]  
Agrawal G. P., 2013, Nonlinear Fiber Optics, V19892
[2]   Gauge symmetry and supersymmetry of multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
PHYSICAL REVIEW D, 2008, 77 (06)
[3]   Comments on multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
JOURNAL OF HIGH ENERGY PHYSICS, 2008, (02)
[4]   Modeling multiple M2-branes [J].
Bagger, Jonathan ;
Lambert, Neil .
PHYSICAL REVIEW D, 2007, 75 (04)
[5]   THE LARGE-N LIMIT OF EXTENDED CONFORMAL-SYMMETRIES [J].
BAKAS, I .
PHYSICS LETTERS B, 1989, 228 (01) :57-63
[6]   SUPERCONFORMAL ALGEBRA AND SUPER-KDV EQUATION - 2 INFINITE FAMILIES OF POLYNOMIAL FUNCTIONS WITH VANISHING POISSON BRACKETS [J].
BILAL, A ;
GERVAIS, JL .
PHYSICS LETTERS B, 1988, 211 (1-2) :95-100
[7]   Ternary analogues of lie and Malcev algebras [J].
Bremner, MR ;
Peresi, LA .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2006, 414 (01) :1-18
[8]   Hamiltonian structures for the generalized dispersionless KdV hierarchy [J].
Brunelli, JC .
REVIEWS IN MATHEMATICAL PHYSICS, 1996, 8 (08) :1041-1053
[9]   INFINITE SYMMETRY IN THE QUANTUM HALL-EFFECT [J].
CAPPELLI, A ;
TRUGENBERGER, CA ;
ZEMBA, GR .
NUCLEAR PHYSICS B, 1993, 396 (2-3) :465-490
[10]   CLASSIFICATION OF QUANTUM HALL UNIVERSALITY CLASSES BY W(1+INFINITY) SYMMETRY [J].
CAPPELLI, A ;
TRUGENBERGER, CA ;
ZEMBA, GR .
PHYSICAL REVIEW LETTERS, 1994, 72 (12) :1902-1905