First passage times for Markov renewal processes and applications

被引:0
|
作者
Xu, GH [1 ]
Yuan, XM
Li, QL
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
[2] Chinese Acad Sci, Asian Pacific Operat Res Ctr, Beijing 100080, Peoples R China
[3] APORS, Asian Pacific Operat Res Ctr, Beijing 100080, Peoples R China
[4] Chinese Acad Sci, Inst Automat, Natl Lab Pattern Recognit, Beijing 100080, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY | 2000年 / 43卷 / 12期
基金
中国国家自然科学基金;
关键词
Markov renewal process (MRP); joint transform; first passage time; busy period; busy cycle; uniform error;
D O I
10.1007/BF02880061
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes a uniformly convergent algorithm for the joint transform of the first passage time and the first passage number of steps for general Markov renewal processes with any initial state probability vector. The uniformly convergent algorithm with arbitrarily prescribed error can be efficiently applied to compute busy periods, busy cycles, waiting times, sojourn times, and relevant indices of various generic queueing systems and queueing networks. This paper also conducts a numerical experiment to implement the proposed algorithm.
引用
收藏
页码:1238 / 1249
页数:12
相关论文
共 50 条
  • [31] Moment convergence of first-passage times in renewal theory
    Iksanov, Alexander
    Marynych, Alexander
    Meiners, Matthias
    STATISTICS & PROBABILITY LETTERS, 2016, 119 : 134 - 143
  • [32] SOJOURN TIMES AND FIRST PASSAGE TIMES FOR BIRTH AND DEATH PROCESSES
    王梓坤
    Science China Mathematics, 1980, (03) : 269 - 279
  • [33] SEMIORDERING OF PROBABILITIES OF FIRST PASSAGE TIME OF MARKOV PROCESSES
    KALMYKOV, GI
    THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1969, 14 (04): : 704 - &
  • [34] Constrained Markov decision processes with first passage criteria
    Yonghui Huang
    Qingda Wei
    Xianping Guo
    Annals of Operations Research, 2013, 206 : 197 - 219
  • [35] Constrained Markov decision processes with first passage criteria
    Huang, Yonghui
    Wei, Qingda
    Guo, Xianping
    ANNALS OF OPERATIONS RESEARCH, 2013, 206 (01) : 197 - 219
  • [36] Exponentiality of First Passage Times of Continuous Time Markov Chains
    Romain Bourget
    Loïc Chaumont
    Natalia Sapoukhina
    Acta Applicandae Mathematicae, 2014, 131 : 197 - 212
  • [37] Markov chain sensitivity measured by mean first passage times
    Cho, GE
    Meyer, CD
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 316 (1-3) : 21 - 28
  • [38] Higher order ergodic Markov chains and first passage times
    Han, Lixing
    Wang, Kelun
    Xu, Jianhong
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6772 - 6779
  • [39] Exponentiality of First Passage Times of Continuous Time Markov Chains
    Bourget, Romain
    Chaumont, Loic
    Sapoukhina, Natalia
    ACTA APPLICANDAE MATHEMATICAE, 2014, 131 (01) : 197 - 212
  • [40] Extreme value statistics of ergodic Markov processes from first passage times in the large deviation limit
    Hartich, David
    Godec, Aljaz
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (24)