Skin lesion image segmentation using Delaunay Triangulation for melanoma detection

被引:139
作者
Pennisi, Andrea [1 ,2 ]
Bloisi, Domenico D. [1 ]
Nardi, Daniele [1 ]
Giampetruzzi, Anna Rita [3 ]
Mondino, Chiara [3 ,4 ]
Facchiano, Antonio [3 ]
机构
[1] Sapienza Univ Rome, Dept Comp Control & Management Engn, Via Ariosto 25, Rome, Italy
[2] Vrije Univ Brussel, Dept Elect & Informat, Pl Laan 2, B-1050 Brussels, Belgium
[3] Ist Dermopat Immacolata IDI IRCCS, Via Monti Di Creta 104, Rome, Italy
[4] Cantonal Hosp Bellinzona, Dept Dermatol, Serv Allergol & Clin Immunol, CH-6500 Bellinzona, Switzerland
关键词
Melanoma detection; Dermoscopy images; Automatic segmentation; Border detection; GRADIENT VECTOR FLOW; BORDER DETECTION; DERMOSCOPY; DIAGNOSIS;
D O I
10.1016/j.compmedimag.2016.05.002
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Developing automatic diagnostic tools for the early detection of skin cancer lesions in dermoscopic images can help to reduce melanoma-induced mortality. Image segmentation is a key step in the automated skin lesion diagnosis pipeline. In this paper, a fast and fully-automatic algorithm for skin lesion segmentation in dermoscopic images is presented. Delaunay Triangulation is used to extract a binary mask of the lesion region, without the need of any training stage. A quantitative experimental evaluation has been conducted on a publicly available database, by taking into account six well-known state-of-the-art segmentation methods for comparison. The results of the experimental analysis demonstrate that the proposed approach is highly accurate when dealing with benign lesions, while the segmentation accuracy significantly decreases when melanoma images are processed. This behavior led us to consider geometrical and color features extracted from the binary masks generated by our algorithm for classification, achieving promising results for melanoma detection. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:89 / 103
页数:15
相关论文
共 41 条
[1]   Sensitivity, specificity, and diagnostic accuracy of three dermoscopic algorithmic methods in the diagnosis of doubtful melanocytic lesions [J].
Annessi, Giorgio ;
Bono, Riccardo ;
Sampogna, Francesca ;
Faraggiana, Tullio ;
Abeni, Damiano .
JOURNAL OF THE AMERICAN ACADEMY OF DERMATOLOGY, 2007, 56 (05) :759-767
[2]  
[Anonymous], 2005, DATA MINING
[3]  
[Anonymous], 2015, Dermoscopy Image Analysis, DOI DOI 10.1201/B19107
[4]  
[Anonymous], 2012, Delaunay Mesh Generation
[5]   CDKN2A and MC1R variants influence dermoscopic and confocal features of benign melanocytic lesions in multiple melanoma patients [J].
Bassoli, Sara ;
Maurichi, Andrea ;
Rodolfo, Monica ;
Casari, Alice ;
Frigerio, Simona ;
Pupelli, Gaia ;
Farnetani, Francesca ;
Pelosi, Giuseppe ;
Santinami, Mario ;
Pellacani, Giovanni .
EXPERIMENTAL DERMATOLOGY, 2013, 22 (06) :411-416
[6]  
Boltz S., 2010, SRM Method Implementation
[7]   Border detection in dermoscopy images using statistical region merging [J].
Celebi, M. Emre ;
Kingravi, Hassan A. ;
Iyatomi, Hitoshi ;
Aslandogan, Y. Alp ;
Stoecker, William V. ;
Moss, Randy H. ;
Malters, Joseph M. ;
Grichnik, James M. ;
Marghoob, Ashfaq A. ;
Rabinovitz, Harold S. ;
Menzies, Scott W. .
SKIN RESEARCH AND TECHNOLOGY, 2008, 14 (03) :347-353
[8]   Lesion Border Detection in Dermoscopy Images Using Ensembles of Thresholding Methods [J].
Celebi, M. Emre ;
Wen, Quan ;
Hwang, Sae ;
Iyatomi, Hitoshi ;
Schaefer, Gerald .
SKIN RESEARCH AND TECHNOLOGY, 2013, 19 (01) :E252-E258
[9]   Lesion border detection in dermoscopy images [J].
Celebi, M. Emre ;
Iyatomi, Hitoshi ;
Schaefer, Gerald ;
Stoecker, William V. .
COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2009, 33 (02) :148-153
[10]   An Endogenous Electron Spin Resonance (ESR) Signal Discriminates Nevi from Melanomas in Human Specimens: A Step Forward in Its Diagnostic Application [J].
Cesareo, Eleonora ;
Korkina, Liudmila ;
D'Errico, Gerardino ;
Vitiello, Giuseppe ;
Aguzzi, Maria Simona ;
Passarelli, Francesca ;
Pedersen, Jens Z. ;
Facchiano, Antonio .
PLOS ONE, 2012, 7 (11)