Regularity results for minimizers of (2, q)-growth functionals in the Heisenberg Group

被引:1
作者
Foeglein, Anna [1 ]
机构
[1] Univ Regensburg, NWF I Math, D-93040 Regensburg, Germany
关键词
QUASI-LINEAR EQUATIONS; ELLIPTIC-EQUATIONS; INTEGRAL FUNCTIONALS; INEQUALITY; CALCULUS; SPACES;
D O I
10.1007/s00229-010-0366-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider integral functionals in the Heisenberg group, whose convex C-2-integrand has quadratic growth from below, and growth of order q > 2 from above. We prove Holder regularity for the full gradient of minimizers under the condition that q is less than an explicitly calculated dimension-dependent bound.
引用
收藏
页码:131 / 172
页数:42
相关论文
共 46 条
[1]  
Acerbi E, 2005, J REINE ANGEW MATH, V584, P117
[2]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[3]   Regularity results for a class of functionals with non-standard growth [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 156 (02) :121-140
[4]  
[Anonymous], 1991, Ric. Mat.
[5]  
[Anonymous], 2006, Applications of mathematics, DOI DOI 10.1007/S10778-006-0110-3
[6]  
Capogna L, 1997, COMMUN PUR APPL MATH, V50, P867, DOI 10.1002/(SICI)1097-0312(199709)50:9<867::AID-CPA3>3.0.CO
[7]  
2-3
[8]   Regularity of minimizers of the calculus of variations in Carnot groups via hypoellipticity of systems of Hormander type [J].
Capogna, L ;
Garofalo, N .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2003, 5 (01) :1-40
[9]  
Capogna L, 1999, MATH ANN, V313, P263, DOI 10.1007/s002080050261
[10]   AN EMBEDDING THEOREM AND THE HARNACK INEQUALITY FOR NONLINEAR SUBELLIPTIC EQUATIONS [J].
CAPOGNA, L ;
DANIELLI, D ;
GAROFALO, N .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1993, 18 (9-10) :1765-1794