L2-Gain Analysis of Periodic Event-Triggered Control and Self-Triggered Control Using Lifting

被引:20
作者
Strijbosch, Nard [1 ,2 ,3 ]
Dullerud, Geir E. [1 ,2 ,3 ]
Teel, Andrew R. [1 ,2 ,3 ]
Heemels, W. P. M. H. [1 ,2 ,3 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5632 AZ Eindhoven, Netherlands
[2] Univ Illinois, Dept Mech & Ind Engn, Urbana, IL 61801 USA
[3] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Networked control systems; periodic event-triggered control (PETC); piecewise affine (PWA) systems; self-triggered control (STC); STABILITY ANALYSIS; CONTROL-SYSTEMS; FRAMEWORK;
D O I
10.1109/TAC.2020.3025304
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We analyze the stability, and L-2-gain properties of a class of hybrid systems that exhibit time-varying linear flow dynamics, periodic time-triggered jumps, and arbitrary nonlinear jump maps. This class of hybrid systems encompasses periodic event-triggered control, self-triggered control, and networked control systems including time-varying communication delays. New notions on the stability, and contractivity (L-2-gain strictly smaller than 1) from the beginning of the flow, and from the end of the flow are introduced, and formal relationships are derived between these notions, revealing that some are stronger than others. Inspired by ideas from lifting, it is shown that the internal stability, and contractivity in L-2-sense of a continuous-time hybrid system in the framework is equivalent to the stability, and contractivity in l(2)-sense (meaning the l(2)-gain is smaller than 1) of an appropriate time-varying discrete-time nonlinear system. These results recover existing works in the literature as special cases, and indicate that analysing different discrete-time nonlinear systems (of the same level of complexity) than in existing works yield stronger conclusions on the L-2-gain.
引用
收藏
页码:3749 / 3756
页数:8
相关论文
共 22 条
[11]   Stability analysis and design of reset control systems with discrete-time triggering conditions [J].
Guo, Yuqian ;
Gui, Weihua ;
Yang, Chunhua ;
Xie, Lihua .
AUTOMATICA, 2012, 48 (03) :528-535
[12]   L2-Gain Analysis for a Class of Hybrid Systems With Applications to Reset and Event-Triggered Control: A Lifting Approach [J].
Heemels, W. P. M. H. ;
Dullerud, G. E. ;
Teel, A. R. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2016, 61 (10) :2766-2781
[13]   Periodic Event-Triggered Control for Linear Systems [J].
Heemels, W. P. M. H. ;
Donkers, M. C. F. ;
Teel, Andrew R. .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (04) :847-861
[14]   An ISS self-triggered implementation of linear controllers [J].
Mazo, Manuel, Jr. ;
Anta, Adolfo ;
Tabuada, Paulo .
AUTOMATICA, 2010, 46 (08) :1310-1314
[15]   Stability properties of reset systems [J].
Nesic, Dragan ;
Zaccarian, Luca ;
Teel, Andrew R. .
AUTOMATICA, 2008, 44 (08) :2019-2026
[16]   Self-triggered linear quadratic networked control [J].
Souza, M. ;
Deaecto, G. S. ;
Geromel, J. C. ;
Daafouz, J. .
OPTIMAL CONTROL APPLICATIONS & METHODS, 2014, 35 (05) :524-538
[17]  
Strijbosch N. W. A., 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC), P6069, DOI 10.1109/CDC.2017.8264576
[18]   The sampled-data H-infinity problem: A unified framework for discretization-based methods and Riccati equation solution [J].
Toivonen, HT ;
Sagfors, MF .
INTERNATIONAL JOURNAL OF CONTROL, 1997, 66 (02) :289-309
[19]   Frequency-domain tools for stability analysis of reset control systems [J].
van Loon, S. J. L. M. ;
Gruntjens, K. G. J. ;
Heertjes, M. F. ;
van de Wouw, N. ;
Heemels, W. P. M. H. .
AUTOMATICA, 2017, 82 :101-108
[20]  
Velasco M., 2003, 24th IEEE Real-Time Systems Symposium, P67