Domain-specific Event Abstraction

被引:5
作者
Klessascheck, Finn [1 ]
Lichtenstein, Tom [1 ]
Meier, Martin [1 ]
Remy, Simon [1 ]
Sachs, Jan Philipp [2 ,4 ]
Pufahl, Luise [3 ]
Miotto, Riccardo [4 ,5 ]
Boettinger, Erwin [2 ,4 ]
Weske, Mathias [1 ]
机构
[1] Univ Potsdam, Hasso Plattner Inst HPI, Potsdam, Germany
[2] Univ Potsdam, Digital Hlth Ctr, HPI, Potsdam, Germany
[3] Tech Univ Berlin, Software & Business Engn, Berlin, Germany
[4] Icahn Sch Med Mt Sinai, Hasso Plattner Inst Digital Hlth Mt Sinai, New York, NY USA
[5] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, New York, NY USA
来源
24TH INTERNATIONAL CONFERENCE ON BUSINESS INFORMATION SYSTEMS (BIS): ENTERPRISE KNOWLEDGE AND DATA SPACES | 2021年
基金
美国国家卫生研究院;
关键词
Process mining; Event abstraction; Domain knowledge; Healthcare;
D O I
10.52825/bis.v1i.39
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Process mining aims at deriving process knowledge from event logs, which contain data recorded during process executions. Typically, event logs need to be generated from process execution data, stored in different kinds of information systems. In complex domains like healthcare, data is available only at different levels of granularity. Event abstraction techniques allow the transformation of events to a common level of granularity, which enables effective process mining. Existing event abstraction techniques do not sufficiently take into account domain knowledge and, as a result, fail to deliver suitable event logs in complex application domains. This paper presents an event abstraction method based on domain ontologies. We show that the method introduced generates semantically meaningful high-level events, suitable for process mining; it is evaluated on real-world patient treatment data of a large U.S. health system.
引用
收藏
页码:117 / 126
页数:10
相关论文
共 18 条
[1]   Bridging abstraction layers in process mining [J].
Baier, Thomas ;
Mendling, Jan ;
Weske, Mathias .
INFORMATION SYSTEMS, 2014, 46 :123-139
[2]   Extraction, correlation, and abstraction of event data for process mining [J].
Diba, Kiarash ;
Batoulis, Kimon ;
Weidlich, Matthias ;
Weske, Mathias .
WILEY INTERDISCIPLINARY REVIEWS-DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 10 (03)
[3]  
Folino F, 2014, LECT NOTES COMPUT SC, V8484, P533, DOI 10.1007/978-3-319-07881-6_36
[4]  
Homayounfar P, 2012, FED CONF COMPUT SCI, P1135
[5]  
Leemans S.J.J., 2014, P INT C BUS PROC MAN, V171, P66
[6]   Using Multi-Level Information in Hierarchical Process Mining: Balancing Behavioural Quality and Model Complexity [J].
Leemans, Sander J. J. ;
Goel, Kanika ;
van Zelst, Sebastiaan J. .
2020 2ND INTERNATIONAL CONFERENCE ON PROCESS MINING (ICPM 2020), 2020, :137-144
[7]  
Leonardi G, 2017, LNBIP, P45
[8]  
LEVENSHT.VI, 1965, DOKL AKAD NAUK SSSR+, V163, P845
[9]  
Lu X., 2020, INT C PROCESS MINING, P145
[10]   Guided Process Discovery - A pattern-based approach [J].
Mannhardt, Felix ;
de Leoni, Massimiliano ;
Reijers, Hajo A. ;
van der Aalst, Wil M. P. ;
Toussaint, Pieter J. .
INFORMATION SYSTEMS, 2018, 76 :1-18